Animal dung availability and their fertilizer values in a context of low soil fertility conditions for forage seed and crops production in Benin (West Africa)


Animal dung availability and their fertilizer values in a context of low soil fertility conditions for forage seed and crops production in Benin (West Africa).


Basile GBENOU1, Sébastien ADJOLOHOUN1*, Léonard AHOTON2, Daniel Bignon Maxime HOUNDJO1, Aliou SAÏDOU2, Marcel HOUINATO1, Brice Augustin SINSIN3
1Département de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin.
2Département de Production Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin.
3Département de l’Aménagement et Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin.


American Journal of Agricultural Research

Livestock manure, feed biomass fed to animals that pass through digestive tract undigested and urine excreted from subsequent tissue metabolism, is conventionally termed as wastes. To optimize the use of animal manure for the purpose of agronomic processing or valorization, it is essential to know its availability and plant nutrients composition. The use of reference values ​​is a quick method of estimation. However, books on farm fertilizers generally offer only an average value that is not representative of the diversity of situations. The aim of this study was to (1) estimate the quantity of manures from cattle, sheep, goats, pigs and poultry, (2) determine the physico-chemical characteristics and plant nutrient contents of these droppings and (3) identify the inter-relationships between the physical characteristics (pH, EC and dry matter(DM)) and the most essential macronutrients (N, P and K). A total of 30 animal groups (herds or flocks) were survived per species and a total of 30 samples were collected over twelve months (January 1st to December 31, 2016) for DM, pH, electrical conductibility, nitrogen, phosphorous, potassium, calcium, magnesium and sodium contents for each sample.  According to animal population of the country, the results of the study showed that, an amount of 1.630600 tons DM of cattle manure, 227800 tons DM of sheep dung, 136,900 tons DM of goat dung, 122,400 tons DM of pig dropping and 36,500 tons of poultry excreta are annually available in Benin. Physico-chemical and analyzes of droppings showed significant differences (P˂0.01) between mineral compositions of these dropping. Poultry manure are richer in macronutrients than other types of animal manure (N = 11.7 ± 3.9, P = 4.6 ± 2.3, K = 7.6 ± 1.3, Ca = 41.2 ± 16.7 g/kg), followed by goat and sheep manure (N = 6.0 ± 3.7, P = 4.9 ± 3.9, K = 7.3 ± 3.3, Ca = 7.7 ± 3.8 g / kg and N = 6.7 ± 2.3, P = 4.4 ± 1.5, K = 7.3 ± 3.6, Ca = 7.7 ± 2.6 g / kg, respectively). Mean macronutrient compositions of swine dropping were: (N = 4.5 ± 2.0, P = 1.4 ± 0.8, K = 2.9 ± 0.8, Ca = 1.8 ± 0.9 g / kg). The animal manure that showed the lowest levels of these three macronutrients were those of cattle (N = 3.0 ± 0.6, P = 0.6 ± 0.1, K = 4.1 ± y, Ca = 6.4 ± 3.1 g/kg). Correlations between physico-chemical properties (pH, EC, DM) and nutrient concentration showed that dry matter (DM) and electrical conductivity (EC) could be used to estimate nutrient (nitrogen, phosphorus and potassium) concentrations. The results vary widely depending on the source and type of dejection but they are a good basis for choosing rational and optimal soil fertilization for crop and forage productions.


Keywords: animal manure, nitrogen, phosphorus, potassium, calcium, sodium, physico-chemical properties, Benin.

Free Full-text PDF


How to cite this article:
GBENOU et al.,. Animal dung availability and their fertilizer values in a context of low soil fertility conditions for forage seed and crops production in Benin (West Africa). American Journal of Agricultural Research, 2017,2:12. DOI:10.28933/ajar-2017-10-2902


References:

1 Adekiya A. O. and Agbede T. M., 2009. Growth and yield of tomato (Lycopersicon esculentum Mill) as influenced by poultry manure and NPK fertilizer. Emir. J. Food Agric. 21 (1): 10-20 http://cfa.uaeu.ac.ae/ejfa.shtml
2 Ademiluyi BO, Omotoso S.O., 2008. Comparative evaluation of Tithonia diversifolia and NPK fertilizer for soil improvement in maize (Zea mays) production in Ado- Ekiti, South Western Nigeria. Research Journal of Agronomy, 2(1), 8: 11.
3 Adjolohoun S. 1992. Contribution à l’Etude des Systèmes d’Elevage et Gestion Agro-Pastorale du Terroir : Cas de Village de Tchankuehoun dans la Sous-Préfecture de Matéri (BENIN). Mémoire d’Ingénieur Agronome. Faculté des Sciences Agronomiques, Université d’Abomey-Calavi. 169p.
4 Akanni, D.I. and Ojeniyi S.O., 2007. Effect of different levels of poultry manure on soil physical properties, nutrient status, growth and yield of tomato (Lycopersicon esculentum). Research Journal of Agronomy, 1:1-4.
5 Alam, M.N., Abedin, M.J., & Azad, M.A.K. 2010. Effect of micronutrients on growth and yield of onion under calcareous soil environment. International Research Journal of Plant Sciences. 1(3), 56-61.
6 Alkali H.A., Muhammad B.F., Njidda A.A., Abubakar M. and Ghude M.I., 2017. Relative forage preference by camel (Camelus dromedarius) as influenced by season, sex and age in the Sahel zone of north western Nigeria. AJAR 12(1), 1-5.
7 APHA. 1998. “Standard Methods for the Examination of Water and Wastewater”. (eds. S.C. Lenore, A.E. Greenberg and A.D. Eaton), 20th Edition, American Public Health Association, Washington, DC, USA.
8 Ayeni, L.S., Adetunji, M.T., Ojeniyi, S. O., Ewulo, B.S. and Adeyemo, A.J., 2008. Comparative and Cumulative Effect of Cocoa Pod Husk Ash and Poultry Manure on Soil and Maize Nutrient Contents and Yield. American-Eurasian Journal of Sustainable Agriculture, 2(1): 92-97.
9 Balsari, P., Dinuccio, E., & Gioelli, F., 2006. A low cost solution for ammonia emissions from covered slurry compared with uncover during storage. Agriculture Ecosystems and Environment. 112, 129-134.
10 Basson, W.D., Stanton, D.A. and Bohmer, R.G., 1968. Automated procedure for the simultaneous determination of phosphorus and nitrogen in plant tissue. Analyst 93: 166–172.
11 Batelle Memorial Institute. 1999. Annual Reports 1999, Battelle Memorial Institute, USA.
12 Bayram G., Turk M., Carpici E.B., and Celik N., 2009. The effect of aeration and application of manure and fertilizer on the hay yield, its quality and botanical composition of the abandoned range. African Journal of Agricultural Research 4(5): 498-504.
13 Bellotti, G., 1997. Electrical Conductivity Meter: a device to estimate nutrient content of animal manure. Ricerca condotta presso l’Istituto di Ingegneria Agraria: 1-11.
14 Bheki G.M., Alpheus M. Z. and Stefan J.S. (2011) Poultry manure enhances grass establishment at aquarry rehabilitation site in subtropical South Africa. African Journal of Agricultural Research, 6(1), 46-50, http://www.academicjournals.org/AJAR
15 Bokossa, H.K.J., Saïdou, A., Sossoukpe, E., Fiogbé, D.E. and Kossou, D. (2014) Decomposition and Mineralization Effect of Various Sources of Pig Manure on Water Quality and Nutrients Availability for Agro-Fish System in Benin. Agricultural Sciences, 5, 1194-1206. http://dx.doi.org/10.4236/as.2014.512129
16 Brady, N.C., Weil, R.R., (2002), The Nature and Properties of Soil, 13th ed. Springer Netherlands, p.249.
17 Byrne, E. 1979. “Analysis of Agricultural Materials”. An Foras Taluntais (now Teagasc), Dublin, Ireland, 197 pages.
18 Chamon AS, Gerzabek MH, Mondol SM, Ullah M, Rahman WEH. 2005. Influence of soil amendments on heavy metal accumulation in crops on polluted soils of Bangladesh. Communic Soil Sci Plant Anal 36:907 – 924.
19 Chastain J.P., Camberato, J.J., & Albrecht, J.E. Nutrient content of livestock and poultry manure Clemson University. 2001. Accessed 28 October 2017. Available: http://www.clemson.edu/extension/camm/manuals/poultry/pch3b_00.pdf
20 Das, A., Prasad, M., Shivay, Y.S. and Subha, K.M. 2004. Productivity and sustainability of cotton (Gossypium hirsutum L.)-Wheat (Triticum aestivum L.) cropping systeme as influenced by Prilled Urea, farmyard manure and azotobacter. J. Agronomy and crop science 190, 298-304.
21 De Silva ASH, Cook HF. 2003. Soil physical conditions and physiological performance of cowpea following organic matter amelioration of sandy substrates. Communic Soil Sci Plant Anal 34:1039 – 1058.
22 Eghball B (2002) Soil properties as influenced by phosphorusand nitrogen-based manure and compost applications. Agron J 94:128–135
23 Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Advan Agron 88:97–185
24 FAO. Fertilizers and their uses. 2000; 26- 29.
25 Farhad W., Saleem M. F., Cheema M. A .and Hammad H. M., 2009. Effect of poultry manure levels on the productivity of spring maize (Zea mays L.). The Journal of Animal & Plant Sciences 19(3), 122-125.
26 Ghanbari A., Babaeian M., Esmaeilian Y., Tavassoli A., and Asgharzade A., 2012. The effect of cattle manure and chemical fertilizer on yield and yield component of barley (Hordeum vulgare). African Journal of Agricultural Research 7(3), 504-508.
27 Graves A., Matthews R., Waldie K., Bhurtel R., Quashie-Sam J., 2001. Review of technologies being evaluated for the Forest/Agriculture Interface. Institute of Water and Environment Cranfield University Silsoe, Bedfordshire MK45 4DT UNITED KINGDOM.pp 229.
28 Hackett, R., 2007. Exploiting pig manure as a nutrient source for cereals in Ireland. In: National Tillage Conference. Teagasc, Crop Reserach Centre, Oak Park, Carlow, Ireland.
29 Harendra, S., Kumar, S.M., & Singh, K.V. (2009). Effect of Sulphur and FYM on Yield and Nutrients Uptake by Garlic (Allium sativum L.) in an Alluvial Soil. Annals of Horticulture, 2(1), 86-88.
30 Harrison R, Webb J. 2001. A review of the effect of N fertilizer type on gaseous emissions. Adv Agron, 73, 67 – 103.
31 Herencia, J.F., Ruiz-Porras, J.C., Melero, S., Garcia-Galavis, P.A., Morillo, E. and Maqueda C. 2007. Composition between organic and mineral fertilization for soil fertility levels, crop macronutrient concentrations and yield. Agron. J. 99, 973-983.
32 Indoria AK, Poonia SR. 2006. Phytoextractability of lead from soil by some oilseed crops as affected by sewage sludge and farmyard manure. Arch Agron Soil Sci 52, 667 – 677.
33 Koura B. I. (2015). Improvement of Animal Productivity by Using Crop Residues in Integrated Crop-livestock System in Benin. PhD Thesis, 216 p. University of Abomey-Calavi, Benin.
34 Kowalski Z., Makara A., and Fijorek K., 2013. Changes in the properties of pig manure slurry 2 Vol. 60, No 4/2013 845–850 on-line at: www.actabp.pl
35 Kungolos A, Samaras P, Tsiridis V, Petala P, Sakellaropoulos G. 2006. Bioavailability and toxicity of heavy metals in the presence of natural organic matter. J Environ Sci Health 41, 1509 – 1517.
36 Lesse D.P.A.A. (2016). Gestion et modélisation de la dynamique des parcours de transhumance dans un contexte de variabilités climatiques au nord-est du Bénin. Thèse de doctorat, Université d’Abomey-Calavi, Bénin, 299 p
37 Maheswarappa HP, Nanjappa HV, Hegde MR, Prabhu SR. 1999. Influence of planting material, plant population and organic manures on yield and East Indian galangal (Kaempferia galanga), soil physico-chemical and biological properties. Ind J Agron 44, 651-657.
38 Martínez-Suller, L., Azzelino A., & Provolo, G. (2008). Analysis of livestock slurries from farms across Northern Italy: relationship between indicators and nutrient content. Biosystems Engineering, 94(4), 540-552.
39 Materechera SA, Salagae AM (2002). Use of partially decomposed cattle and chicken manures amended with wood-ask in two South African arable soils with contrasting texture effect on nutrient uptake, early growth and dry matter yield of maize. Commun. Soil Sci. Plant Anal., 33(1/2), 179-200.
40 McLaughlin MJ, Tiller KG, Naidu R, Stevens DP. 1996. The behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1 – 54.
41 Moral, R., Perez-Murcia, M.D., Perez-Espinosa, A., Moreno-Caselles, J., Paredes, C., 2005. Estimation of nutrient values of pig slurries in southeast Spain using easily determined properties. Waste Manage. 25 (7), 719–725.
42 Morton JF. 1981. Atlas of medicinal plants of Middle America. Bahamas to Yucatan. Springfield, IL: C.C. Thomas.
43 Mushambanyi T.M.B., 2002. Contribution à la promotion de la culture du blé (Triticum aestivum L.) au Sud Kivu, République Démocratique du Congo: Evaluation du potentiel de rendement de deux génotypes d’origine burundaise, dans différentes zones agro-écologiques locales. TROPICULTURA, 20(4): 210-216.
44 Nasim W., Ahmad A., Khaliq T., Wajid A., Munis M.F.H., Chaudhry H. J., Maqbool M. M., Ahmad S.and Hammad M.H., 2012. Effect of organic and inorganic fertilizer on maize hybrids under agro-environmental conditions of Faisalabad-Pakistan. African Journal of Agricultural Research 7(17): 2713-2719.
45 Ndegwa, P.M., & Zhu, J. (2003). Sampling procedures for piggery in deep pits for estimation of nutrient content. Biosystems Engineering, 85(2), 239-248.
46 Ndegwa, P.M., Zhu, J., & Luo, A. (2002). Stratification of solids, nitrogen and phosphorus in swine manure in deep pits under slatted floors. Bioresource Technology, 83(3), 203-211.
47 Neubauer H, Furrer G, Kayser A, Schulin R. 2006. Siderophores, NTA, and citrate: Potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353 – 368.
48 O’Connell-Motherway, S., Lynch, P.B., Carton, O.T., O’Toole, P., 1997. Effect of water: feed
49 Pederson, B.K., 1994. Water intake and pig performances. In: Teagasc Pig Conference 1994, pp. 5..
50 Provolo, G., Martinez-Suller, L., 2007. In situ determination of slurry nutrient content by electrical conductivity. Bioresource Technology 98: 3235-3242.
51 Sager M., 2007. Trace and nutriment elements in manure, dung and compost samples in Austria. Soil Biology & Biochemistry 39: 1383-1390.
52 SAÏDOU A. (2006) Converting strategies by Farmers and Scientits to improve Soil Fertility and Enhance Crop-Production in Benin. Ph.D. Thesis: Wageningen University, The Netherlands.
53 Saïdou, A , Kouessivi, H.J.B., Fiogbé, E.D. and Kossou D. (2016) Kinetic of pigs’ manures decomposition and nutrient release pattern in ferralitic soil of Benin (West Africa). Journal of Soil Science and Environmental Management, 7(6), 73-80. http://www.academicjournals.org/JSSEM
54 Sánchez M, González JL (2005) The fertilizer value of pig slurry. I. Values depending on the type of operations. Bioresour Technol 96: 1117–1123.
55 SAS, 1991. SAS/STAT, User’s guide, 4th Edn, Vers. 9.2. Cary, NC, USA, SASInstitute.
56 Schjønning P, Christensen BT, Carstensen B. 1994. Physical and chemical properties of a sandy loam receiving animal manure, mineral fertilizer or no fertilizer for 90 years. Eur J Soil Sci 45:257 – 268.
57 Scotford, I.,M., Cumby, T.,R., Han, L., Richards, P.,A., 1998a. Development of a prototype nutrient sensing system for livestock slurries. Journal of Agricultural Engineering Research 69: 217-228.
58 Scotford, I.,M., Cumby, T.,R., White, R.,P., Carton, O.,T., Lorenz, F., Hatterman, U., Provolo, G., 1998b. Estimation of the nutrient value of agricultural slurries by measurement of physical and chemical properties. Journal of Agricultural Engineering Research 71: 291-305.
59 Smith SJ, Scheepers JS, Porter LK. 1990. Assessing and managing agricultural nitrogen losses to the environment. Adv Soil Sci 14:1 – 32.
60 Smith, K.A., Charles, D.R., Moorhouse, D., 2000. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: pigs and poultry. Bioresource. Technologyl 71, 183-194.
61 Stevens, R.J., O’Bric, C.J., Carton, O.T., 1995. Estimating nutrient content of animal slurries using electrical conductivity. J. Agric. Sci. 125, 233–238.
62 Suresh, A., Choi, H.L., Lee, J.H., Zhu, K., Yao, H.Q., Choi, H.J., Moon, O.K., Park, C.K., Kim, J.J., 2009. Swine slurry characterization and prediction equations for nutrients on South Korean farms. Trans. ASABE 52 (1), 267–273.
63 Suresh, A., Choi, H.L., Oh, D.I., Moon, O.K. (2009) Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC – Electrical conductivity. Bioresource Technology, 100, 4683–4689. www.elsevier.com/locate/biortech
64 Tunney, H., 1978. Dry matter, specific gravity and nutrient relationships of cattle and pig slurry. In Engineering Problems with Effluents from Livestock (Hawkins J.C. Ed.) Commission of the European Communities, EUR 6249, 430-444.
65 Udoh DJ, Ndoh BA, Asuquo PE, Ndaeyo NU. Crop Production Techniques for the tropics.Concept Publication.Lagos Nigeria. 2005; P. 446.
66 Uwah D.F., Undie U.L., and John N.M., 2014. Comparative Evaluation of Animal Manures on Soil Properties, Growth and Yield of Sweet Maize (Zea mays L. saccharata Strut.). Journal of Agriculture and Environmental Sciences. 3(2) 315-331.
67 Van Kessel, J.S. and Reeves III, J.B. 2000. On-farm quick test for estimating nitrogen in dairy manure. Journal of Dairy Science 83: 1837–1844.
68 Van Kessel, J.S., Thompson, R.B., Reeves III J.B., 1999. Rapid on-farm analysis of manure nutrients using quick tests. Journal of Production Agriculture 12(2): 215-224.
69 Yagüe M.R., Guillén, M., & Quílez, D. (2011). Effect of covers on swine slurry nitrogen conservation during storage in Mediterranean conditions. Nutrient Cycling in Agroecosystems, 90(1), 121-132.
70 Yagüe, M.R., Bosch-Serra, A.D., Boixadera, J. 2012. Measurement and estimation of the fertiliser value of pig slurry by physicochemical models: Usefulness and contraints. Biosystems Engineering, 111 (2): 206-216