Bioactivity of four plant materials against the maize weevil, Sitophilus zeamais Motschulsky


Bioactivity of four plant materials against the maize weevil, Sitophilus zeamais Motschulsky


Olanike T. Alade and Olalekan J. Soyelu*

Department of Crop Production and Protection, Obafemi Awolowo University, Ile-Ife 220005, Osun State, Nigeria


American journal of chemical research-2d-codeFine powders of orange peel (Citrus sinensis), scent leaf (Ocimum gratissimum), morinda leaf (Morinda lucida) and lemongrass (Cymbopogon citratus) were applied against 2-day-old maize weevils, Sitophilus zeamais with a view to identifying non-chemical control agent(s) of the weevils. Growth rate, antioviposition effect, repelling efficacy and mortality due to each powder were determined. It took an average of 35.4 days for weevils to develop from egg to adult and none of the powders had adverse effect on growth rate. The powders repelled maize weevils significantly, being strongest in C. citratus. However, M. lucida did not achieve an effective antioviposition effect like the other three plants. Percent weevil mortality was higher in maize grains treated with C. citratus and M. lucida within the first one week of application but the effect remained stronger in the former beyond this period. The plant materials, especially C. citratus, showed potential for protecting maize grains against the storage pest.


Keywords: Antioviposition; Lemongrass; Maize weevil; Morinda; Mortality; Orange peel; Repellency; Scent leaf; Storage pest

Free Full-text PDF


How to cite this article:
Alade and Soyelu. Bioactivity of four plant materials against the maize weevil, Sitophilus zeamais Motschulsky. American Journal of Chemical Research, 2017, 1:2. DOI:10.28933/ajcr-2017-03-2501


References:
1. Abdulrahaman, A.A., Kolawole, O.M. (2006). Traditional preparations and uses of maize in Nigeria. Ethnobotanical Leaflets, 10, 219-227.
2. Abebe, F., Tefera, T., Mugo, S., Beyene, Y., Vidal, S. (2009). Resistance of maize varieties to the maize weevil Sitophilus zeamais (Motsch.) (Coleoptera: Curculionidae). African Journal of Biotechnology, 8, 5937-5943.
3. Agoda, S., Atanda, S., Usanga, O.E., Ikotun, I., Isong, I.U. (2011). Post-harvest food losses reduction in maize production in Nigeria. African Journal of Agricultural Research, 6, 4833-4839.
4. Amoabeng, B.W., Gurr, G.M., Gitau, C.W., Stevenson, P.C. (2014). Cost:benefit analysis of botanical insecticide use in cabbage: implications for smallholder farmers in developing countries. Crop Protection, 57, 71-76.
5. Arannilewa, S.T., Ekrakene, T., Akinneye, J.O. (2006). Laboratory evaluation of four medicinal plants as protectants against the maize weevil, Sitophilus zeamais (Mots). African Journal of Biotechnology, 5, 2032-2036.
6. Armah, F.A. (2011). Assessment of pesticide residues in vegetables at the farm gate: cabbage (Brassica oleracea) cultivation in Cape Coast, Ghana. Research Journal of Environmental Toxicology, 5, 180-202.
7. Asawalam, E.F., Emosairue, S.O., Hassanali, A. (2008). Essential oil of Ocimum gratissimum (Labiatae) as Sitophilus zeamais (Coleoptera: Curculionidae) protectant. African Journal of Biotechnology, 7, 3771-3776.
8. Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., Oyedeji, A. (2015). Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 20, 7438-7453.
9. Berdegué, M., White, K.K., Trumble, J.T. (1997). Feeding deterrence of Spodoptera exigua (Lepidoptera: Noctuidae) larvae by low concentrations of linear furanocoumarins. Environmental Entomology, 26, 912-919.
10. Berenbaum, M. (1978). Toxicity of a furanocoumarin to armyworms: a case of biosynthetic escape from insect herbivores. Science, 201, 532-534.
11. Cherry, A.J., Bantino, A., Djegui, D., Lomers, C. (2005). Suppression of the stem borer Sesamia calamistis (Lepidoptera: Noctuidae) in maize following seed dressing, topical application and stem injection with African isolates of Beauveria bassiana. International Journal of Pest Management, 50, 67-73.
12. Darko, G., Akoto, O. (2008). Dietary intake of organophosphorus pesticide residues through vegetables from Kumasi, Ghana. Food and Chemical Toxicology, 46, 3703-3706.
13. Demissie, G., Tefera, T., Tadesse, A. (2008). Importance of husk covering on field infestation of maize by Sitophilus zeamais Motsch. (Coleoptera: Curculionidea) at Bako, Western Ethiopia. African Journal of Biotechnology, 7, 3774-3779.
14. Dinham, B. (2003). Growing vegetables in developing countries for local urban populations and export markets: problems confronting small-scale producers. Pest Management Science, 59, 575-582.
15. FAOSTAT (2016). “Provisional 2014 Production Data. Food and Agriculture Organization online statistical databases”. URLhttp://faostat3.fao.org. Accessed 14/10/2016.
16. Feng, R., Isman, M.B. (1995). Selection for resistance to azadirachtin in the green peach aphid Myzus persicae. Experientia, 51, 831-833.
17. Fulda, S., Effert, T. (2015). Selected secondary plant metabolites for cancer therapy. Modern Research on Chinese Materia Medica, 1, 24-28.
18. Hakkim, F.L., Arivazhagan, G., Boopathy, R. (2008). Antioxidant property of selected Ocimum species and their secondary metabolite content. Journal of Medicinal Plants Research, 2, 250-257.
19. Hassanali, A., Herren, H., Khan, Z.R., Pickett, J.A., Woodcock, C.M. (2008). Integrated pest management: the push-pull approach for controlling insect pests and weeds of cereals, and its potential for other agricultural systems including animal husbandry. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 611-621.
20. Kegley, S.E., Hill, B.R., Orme S., Choi A.H. (2016). PAN Pesticide Database, Pesticide Action Network, North America [Internet document] URLhttp://pesticideinfo.org/Detail_Chemical.jsp?Rec_Id=PC32816. Accessed 14/10/2016.
21. Keita, S.M., Vincent, C., Schmit, J., Arnason, J.T., Belanger, A. (2001). Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) (Coleoptera: Bruchidae). Journal of Stored Products Research, 37, 339-349.
22. Li, S., Lo, C-Y., Ho, C-T. (2006). Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. Journal of Agricultural and Food Chemistry, 54, 4176-4185.
23. Markham, R.H., Bosque-Pérez, N., Borgemeister, C., Meikle, W.G. (1994). Developing pest management strategies for the maize weevil, Sitophilus zeamais and the larger grain borer, Prostephanus truncatus, in the humid and sub-humid tropics. FAO Plant Protection Bulletin, 42, 97-116.
24. Metcalf, R.L., Horowitz, A.R. (2014). Insect control. In: Ullmann’s Encyclopedia of Industrial Chemistry: 100 Years Edition (edited by B. Elvers). http://onlinelibrary.wiley.com/doi/10.1002/14356007.a14_263.pub2/abstract
25. Ogunsina, O.O., Oladimeji, M.O., Lajide, L. (2011). Insecticidal action of hexane extracts of three plants against bean weevil, Callosobruchus maculatus (F.) and maize weevil, Sitophilus zeamais Motsch. Journal of Ecology and the Natural Environment, 3, 23-28.
26. Ohta, T., Maruyama, T., Nagahashi, M., Miyamoto, Y., Hosoi, S., Kiuchi, F., Yamazoe, Y., Tsukamoto, S. (2002). Paradisin C: a new CYP3A4 inhibitor from grapefruit juice. Tetrahedron, 58, 6631-6635.
27. Ojo, J.A., Omoloye, A.A. (2012). Rearing the maize weevil, Sitophilus zeamais, on an artificial maize-cassava diet. Journal of Insect Science, 12, 69.
28. Parugrug, M.L., Roxas, A.C. (2008). Insecticidal action of five plants against maize weevil, Sitophilus zeamais Motsch. (Coleoptera: Curculionidae). KMITL Science and Technology Journal, 8, 24-38.
29. Penagos, D.I., Magallanes, R., Valle, J., Cisneros, J., Martínez, A.M., Goulson, D., Chapman, J.W., Caballero, P., Cave, R.D., Williams, T. (2003). Effect of weeds on insect pests of maize and their natural enemies in Southern Mexico. International Journal of Pest Management, 49, 155-161.
30. Poletti, M., Omoto, C. (2003). Resistência de inimigos naturais a pesticidas. Revista Biotecnologia Ciência e Desenvolvimento, 6, 16-26.
31. SAS Institute (2002). SAS/STAT User’s Guide Release V9. SAS Institute, C., North Carolina.
32. Sogorb, M.A., Vilanova, E. (2002). Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicology Letters, 128, 215-228.
33. Tangtrakulwanich, K., Reddy, G.V.P. (2014). Development of insect resistance to plant biopesticides: an overview. In: Advances in Plant Biopesticides (edited by D. Singh). Pp. 47-62. New Delhi, India: Springer.
34. Tefera, T., Kanampiu, F., De Groote, H., Hellin, J., Mugo, S., Kimenju, S., Beyene, Y., Boddupalli, P.M., Shiferaw, B., Banziger, M. (2011). The metal silo: an effective grain storage technology for reducing post-harvest insect and pathogen losses in maize while improving smallholder farmers’ food security in developing countries. Crop Protection, 30, 240-245.
35. Udo, I.O. (2005). Evaluation of the potential of some local spices as stored grain protectants against the maize weevil Sitophilus zeamais Mots (Coleoptera: Curculionidae). Journal of Applied Science and Environmental Management, 9, 165-168.
36. Viegas-Júnior, C. (2003). Terpenes with insecticide activity: alternative for the insect control. Química Nova, 26, 390-400.
37. Wangensteen, H., Molden, E., Christensen, H., Malterud, K.E. (2003). Identification of epoxybergamottin as a CYP3A4 inhibitor in grapefruit peel. European Journal of Clinical Pharmacology, 58, 663-668.
38. Weeks, E.N.I., Logan, J.G., Birkett, M.A., Pickett, J.A., Cameron, M.M. (2013). Tracking bed bugs (Cimex lectularius): a study of the effect of physiological and extrinsic factors on the response to bed bug-derived volatiles. The Journal of Experimental Biology, 216, 460-469.
39. Xu, S. (2002). Environmental fate of carbaryl. A Document of California Environmental Protection Agency, Department of Pesticide Regulation [Internet document] URL http://www.cdpr.ca.gov/docs/emon/pubs/fatememo/carbaryl.pdf. Accessed 14/10/2016.