Nanocomposites for Additive Manufacturing


Nanocomposites for Additive Manufacturing


Rocío Redón1*, L. Ruiz-Huerta2 , Y.C. Almanza-Arjona2 , Y. Rojas-Aguirre3 , A. Caballero-Ruiz2
1 Departamento de Tecnociencias, Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A. P. 70-186, C. P. 04510, Coyoacán, Ciudad de México, México;
2 Laboratorio Nacional de Manufactura Aditiva, Digitalización 3D y Tomografía Computarizada, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A. P. 70- 186, C. P. 04510, Coyoacán, Ciudad de México, México;
3 Catedrática Conacyt comisionada a Laboratorio Nacional de Manufactura Aditiva, Digitalización 3D y Tomografía Computarizada MADiT, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Cd. Universitaria A. P. 70-186, C. P. 04510, Coyoacán, Ciudad de México, México


American journal of chemical research-2d-codeAdditive Manufacturing (AM) is one of several technological breakthroughs that is expected to lead the factories of the future, where conventional equipment will be transformed into smart and flexible systems, run by computers that will allow the fabrication of customized parts. Some authors have called AM the third industrial revolution, as it enables the accurate manufacture of pieces of virtually any shape in different scales, ranging from visual prototypes to specific functional end-use products at relatively short periods of time. Medical applications of AM is one of the key industries driving the innovations in the field, especially because of the possibility to fabricate products individually tailored to the patient’s specific needs. The integration of nanomaterials in the area of AM has a lot of potential and there is a growing interest in academia and industry to explore for new developments. In this section, we examine some successful uses of nanocomposites in additive manufacturing processes.


Keywords: Additive Manufacturing, Nanocomposites

Free Full-text PDF


How to cite this article:
Rocío Redón, L. Ruiz-Huerta, Y.C. Almanza-Arjona, Y. Rojas-Aguirre, A. Caballero-Ruiz. Nanocomposites for Additive Manufacturing. American Journal of Chemical Research, 2017, 1:5. DOI: 10.28933/ajcr-2017-04-2701


References:
1. Well S as. Aldrich Materials Science. Available from: http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Aldrich/Brochure/1/material-matters-v11-n1.pdf
2. Campbell FC. Structural Composite Materials. ASM International; 2010.
3. Chawla KK. Composite Materials: Science and Engineering. Third. Springer New York; 2012. (SpringerLink : Bücher).
4. United States National Nanotechnology Initiative. National Nanotechnology Initiative [Internet]. Nano.gov. [cited 2016 Aug 13]. Available from: http://www.nano.gov/
5. Thostenson ET, Li C, Chou T-W. Nanocomposites in context. Compos Sci Technol. 2005/3;65(3–4):491–516.
6. Ajayan PM, Schadler LS, Braun PV. Nanocomposite Science and Technology. Wiley; 2006. 239 p.
7. Braun PV. Natural Nanobiocomposites, Biomimetic Nanocomposites, and Biologically Inspired Nanocomposites. In: Nanocomposite Science and Technology. Wiley-VCH Verlag GmbH & Co. KGaA; 2003. p. 155–214.
8. Hule RA, Pochan DJ. Polymer Nanocomposites for Biomedical Applications. MRS Bull. 2007;32(04):354–8.
9. Ruiz-Hitzky E, Aranda P, Darder M. Bionanocomposites. In: Kirk-Othmer Encyclopedia of Chemical Technology. John Wiley & Sons, Inc.; 2000.
10. Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. Adv Mater. 2007 May 21;19(10):1309–19.
11. Yu H-Y, Qin Z-Y, Yan C-F, Yao J-M. Green Nanocomposites Based on Functionalized Cellulose Nanocrystals: A Study on the Relationship between Interfacial Interaction and Property Enhancement. ACS Sustainable Chemistry & Engineering. 2014;2(4):875–86.
12. Guigo N, Vincent L, Mija A, Naegele H, Sbirrazzuoli N. Innovative green nanocomposites based on silicate clays/lignin/natural fibres. Compos Sci Technol. 2009/9;69(11–12):1979–84.
13. Wegst UGK, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2014 Oct 26;14(1):23–36.
14. Zhang C, Mcadams DA 2nd, Grunlan JC. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures. Adv Mater. 2016 Aug;28(30):6292–321.
15. Langer R, Vacanti JP. Tissue engineering. Science. 1993 May 14;260(5110):920 LP – 926.
16. Okamoto M, John B. Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci. 2013;38(10-11):1487–503.
17. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym Degrad Stab. 2010;95(11):2126–46.
18. Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv Mater. 2015;27(7):1143–69.
19. Yang J, Liu W, Sui M, Tang J, Shen Y. Platinum (IV)-coordinate polymers as intracellular reduction-responsive backbone-type conjugates for cancer drug delivery. Biomaterials. 2011 Dec;32(34):9136–43.
20. Rhim JW, Wang LF, Hong SI. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 2013;33(2):327–35.
21. Yang C-H, Wang L-S, Chen S-Y, Huang M-C, Li Y-H, Lin Y-C, et al. Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications. Int J Pharm. 2016;510(2):493–500.
22. Daniel M-C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem Rev. 2004 Jan 1;104(1):293–346.
23. Matteini P, Ratto F, Rossi F, Centi S, Dei L, Pini R. Chitosan films doped with gold nanorods as laser‒activatable hybrid bioadhesives. Adv Mater [Internet]. 2010;22. Available from: http://dx.doi.org/10.1002/adma.201002228
24. Veetil JV, Ye K. Tailored Carbon Nanotubes for Tissue Engineering Applications [Internet]. Vol. 25, Biotechnology progress. 2009. p. 709–21. Available from: http://dx.doi.org/10.1002/bp.165
25. Vila M, Cicuéndez M, Sánchez-Marcos J, Fal-Miyar V, Manzano M, Prieto C, et al. Electrical stimuli to increase cell proliferation on carbon nanotubes/mesoporous silica composites for drug delivery. J Biomed Mater Res A. 2013 Jan 1;101A(1):213–21.
26. Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014;10(6):2341–53.
27. Vasita R, Katti DS. Nanofibers and their applications in tissue engineering [Internet]. Vol. 1, International Journal of Nanomedicine. 2006. p. 15–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17722259
28. Saito N, Aoki K, Usui Y, Shimizu M, Hara K, Narita N, et al. Application of carbon fibers to biomaterials: A new era of nano-level control of carbon fibers after 30-years of development. Chem Soc Rev. 2011;40(7):3824–34.
29. Zuo P-P, Feng H-F, Xu Z-Z, Zhang L-F, Zhang Y-L, Xia W, et al. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films. Chem Cent J. 2013;7(1):1–11.
30. Dong HS, Qi SJ. Realising the potential of graphene-based materials for biosurfaces – A future perspective. Biosurface and Biotribology. 2015;1(4):229–48.
31. Yang Y, Asiri AM, Tang Z, Du D, Lin Y. Graphene based materials for biomedical applications. Mater Today. 2013;16(10):365–73.
32. Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012/8;37(8):1079–104.
33. Akkineni AR, Luo Y, Schumacher M, Nies B, Lode A, Gelinsky M. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Acta Biomater. 2015;27:264–74.
34. F42 Committee. Standard Terminology for Additive Manufacturing – General Principles – Terminology [Internet]. Available from: http://dx.doi.org/10.1520/f3177-15
35. Bourell DL. Perspectives on Additive Manufacturing. Annu Rev Mater Res. 2016;46(1):1–18.
36. Ian Gibson, David W. Rosen, Brent Stucker Additive Manufacturing Technologies- Rapid Prototyping to Direct Digital Manufacturing 2009.pdf.
37. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016 Jan;32(1):54–64.
38. Godoi FC, Prakash S, Bhandari BR. 3d printing technologies applied for food design: Status and prospects. J Food Eng. 2016/6;179:44–54.
39. Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The status, challenges, and future of additive manufacturing in engineering. Comput Aided Des Appl. 2015 Dec;69:65–89.
40. Sarobol P, Cook A, Clem PG, Keicher D, Hirschfeld D, Hall AC, et al. Additive Manufacturing of Hybrid Circuits. Annu Rev Mater Res. 2016;46(1):41–62.
41. Weller C, Kleer R, Piller FT. Economic implications of 3D printing: Market structure models in light of additive manufacturing revisited. Int J Prod Econ. 2015/6;164:43–56.
42. Gardan J. Additive manufacturing technologies: state of the art and trends. Int J Prod Res. 2016;54(10):3118–32.
43. Andreas Gebhardt. Layer Manufacturing Processes. In: Understanding Additive Manufacturing. Carl Hanser Verlag GmbH & Co. KG; 2011. p. 31–63.
44. Taylor SL, Jakus AE, Shah RN, Dunand DC. Iron and Nickel Cellular Structures by Sintering of 3D-Printed Oxide or Metallic Particle Inks. Adv Eng Mater [Internet]. 2016 Sep 1; Available from: http://dx.doi.org/10.1002/adem.201600365
45. Gibson I, Rosen D, Stucker B. Applications for Additive Manufacture. In: Additive Manufacturing Technologies. Springer New York; 2015. p. 451–74.
46. Trachtenberg JE, Placone JK, Smith BT, Piard CM, Santoro M, Scott DW, et al. Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design. ACS Biomaterials Science & Engineering. 0(0):null.
47. Zohreh I, Tuanjie C, William K, Xiongbiao C, Frank EB. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering. Tissue Eng Part C Methods. 2016;22(3):173–88.
48. Kuo C-Y, Eranki A, Placone JK, Rhodes KR, Aranda-Espinoza H, Fernandes R, et al. Development of a 3D Printed, Bioengineered Placenta Model to Evaluate the Role of Trophoblast Migration in Preeclampsia. ACS Biomaterials Science & Engineering. 0(0):null.
49. Zhu M, Zhang J, Zhao S, Zhu Y. Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. J Mater Sci. 2015 Sep 10;51(2):836–44.
50. Jakus AE, Shah RN. Multi- and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering. J Biomed Mater Res A [Internet]. 2016 Feb 10; Available from: http://dx.doi.org/10.1002/jbm.a.35684
51. Schumann P, Kampmann A, Sauer G, Lindhorst D, von See C, Stoetzer M, et al. Accelerated vascularization of tissue engineering constructs in vivo by preincubated co-culture of aortic fragments and osteoblasts. Biochem Eng J. 2016 Jan 15;105, Part A:230–41.
52. Zhao F, Zhang W, Fu X, Xie W, Chen X. Fabrication and characterization of bioactive glass/alginate composite scaffolds by a self-crosslinking processing for bone regeneration. RSC Adv. 2016 Sep 12;6(94):91201–8.
53. Pan T, Song W, Cao X, Wang Y. 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering: Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties. J Mater Sci Technol. 2016/9;32(9):889–900.
54. Yan J, Miao Y, Tan H, Zhou T, Ling Z, Chen Y, et al. Injectable alginate/hydroxyapatite gel scaffold combined with gelatin microspheres for drug delivery and bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2016 Jun;63:274–84.
55. Li H, Jiang F, Ye S, Wu Y, Zhu K, Wang D. Bioactive apatite incorporated alginate microspheres with sustained drug-delivery for bone regeneration application. Mater Sci Eng C Mater Biol Appl. 2016 May;62:779–86.
56. Gonçalves AI, Rodrigues MT, Carvalho PP, Bañobre-López M, Paz E, Freitas P, et al. Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration. Adv Healthc Mater. 2016 Jan 21;5(2):213–22.
57. Schirmer KSU, Esrafilzadeh D, Thompson BC, Quigley AF, Kapsa RMI, Wallace GG. Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. J Mater Chem B Mater Biol Med. 2016 Jan 4;4(6):1142–9.
58. Leopoldo Ruiz-Huerta Yara Cecilia Almanza-Arjona Alberto Caballero-Ruiz Homero Alberto Castro-Espinosa Celia Minerva Díaz-Aguirre Enrique Echevarría y Pérez , (2016),”CAD and AM-fabricated moulds for fast cranio-maxillofacial implants manufacture”, Rapid Prototyping Journal, Vol. 22 Iss 1 pp. 31 – 39