From Micro- to Satellite Gravity: Understanding the Earth

From Micro- to Satellite Gravity: Understanding the Earth

Lev V. Eppelbaum
School of Geosciences, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv, Israel

American Journal of Geographical Research and Reviews

The main physical principle of gravity method application is the difference in densities between the various geological, environmental, archaeological and other targets and host media. Gravity is one of the oldest geophysical methods and it is widely applied for knowledge of subsurface and deep Earth’s domains. The present review displays multiscale examples of gravity field examination: from very detailed (delineation of karst terranes and archaeological targets) to regional investigations (development of 3D physical-geological models and satellite data examination of giant regions). Geographically the examined areas include the South Caucasus, the Dead Sea region, the Eastern Mediterranean and the Arabian-African region. Diverse methodologies of the gravity data processing, qualitative and quantitative interpretation, and results of 3D gravity field modeling are shown. It is demonstrated that integration of gravity field analysis with other geophysical methods (magnetic, paleomagnetic, thermal, seismic, etc.) significantly increases accuracy and reliability of developed physical-geological models. The further ways of evaluation of gravity data analysis are considered.

Keywords: gravity noise, gravity field transformations, quantitative analysis, 3D gravity models, South Caucasus, Eastern Mediterranean, Arabian-African region, subsurface targets, regional reconstructions

Free Full-text PDF

How to cite this article:
Lev V. Eppelbaum. From Micro- to Satellite Gravity: Understanding the Earth. American Journal of Geographical Research and Reviews, 2017; 1:3.


[1] Clegg, B., 2017. Gravity: How the Weakest Force in the Universe Shaped Our Lives. St. Martin’s Press, N.Y.
[2] Aleinikov, A.L., Belikov, V.T. and Eppelbaum, L.V., 2001. Some Physical Foundations of Geodynamics. Kedem Printing-House, Tel Aviv, Israel (in Russian, contents and summary in English).
[3] Andersen, O.B., Knudsen, P. and Berry, P.A.M., 2009. The DNSC-08GRA global marine gravity field from double retracked satellite altimetry. Journal of Geodesy, 84, No. 3, 191-199.
[4] Sandwell, D.T., Garcia, E., Soofi, K., Wessel, P. and Smith, W.H.F., 2013. Toward 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1. The Leading Edge, 32, No. 8, 892-899.
[5] Flechtner, F., Sneeuw, N. and Schub, W.-D., 2014. Observation of the System Earth from Space – CHAMP, GRACE, GOCE and Future Missions. Springer, Heidelberg – N.Y.
[6] Dehlinger, P., 1978. Marine Gravity. Elsevier, Amsterdam.
[7] Parasnis, D.S., 1986. Principles of Applied Geophysics, 4th ed., rev. and suppl. Chapman & Hall, London.
[8] Veselov, K.E., 1986. Gravity Prospecting. Nedra, Moscow (in Russian).
[9] Dobrin, M.B. and Savit, C.H., 1988. Introduction to Geophysical Prospecting. McGraw-Hill, N.Y.
[10] Telford, W.M., Geldart, L.P. and Sheriff, R.E., 1990. Applied Geophysics. Cambridge Univ. Press, Cambridge.
[11] Khesin, B.E., Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publishers (Springer), Ser.: Modern Approaches in Geophysics, Boston – Dordrecht – London.
[12] Kaufman, A.A. and Hansen, R.O., 2008. Principles of the Gravitational Method. Elsevier, Amsterdam.
[13] Jacoby, W. and Peter, S., 2009. Gravity Interpretation. Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer, Dordrecht – Berlin.
[14] Johannes, W.J. and Smilde, P.L., 2009. Gravity Interpretation – Fundamentals and Application of Gravity Inversion and Geological Interpretation. Springer, Berlin – Heidelberg.
[15] Gupta, H.K., 2011. Encyclopedia of Solid Earth Geophysics. Springer, Dordrecht.
[16] Eppelbaum, L.V., 2011. Review of environmental and geological microgravity applications and feasibility of their implementation at archaeological sites in Israel. International Journal of Geophysics, doi: 10.1155/2011/927080, ID 927080, 1-9.
[17] Eppelbaum, L.V. and Khesin, B.E., 2012. Geophysical Studies in the Caucasus. Springer, Heidelberg – N.Y. – London.
[18] Eppelbaum, L.V. and Khesin, B.E., 2004. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, 22, No. 11, 53-56.
[19] Eppelbaum, L.V., Khesin, B.E. and Itkis, S.E., 2001. Prompt magnetic investigations of archaeological remains in areas of infrastructure development: Israeli experience. Archaeological Prospection, 8, No. 3, 163-185.
[20] Eppelbaum, L.V. and Mishne, A.R., 2011. Unmanned Airborne Magnetic and VLF investigations: Effective Geophysical Methodology of the Near Future. Positioning, 2, No. 3, 112-133.
[21] Butler, D. K., 1984. Microgravimetric and gravity-gradient techniques for detection of subsurface cavities. Geophysics, 49, No. 7, 1084-1096.
[22] Rybakov, M., Goldshmidt, V., Fleischer, L. and Rotstein, Y., 2001. Cave detection and 4-d monitoring: a microgravity case history near the Dead Sea. The Leading Edge, 20, No. 8, 896-900.
[23] Debeglia, N., Bitri, A. and Thierry, P., 2006. Karst investigations using microgravity and MASW; Application to Orléans, France. Near Surface Geophysics, 4, 215-225.
[24] Eppelbaum, L.V., Ezersky, M.G., Al-Zoubi, A.S., Goldshmidt, V.I. and Legchenko, A., 2008. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3D modeling. Advances in GeoSciences, 19, 97-115.
[25] Leucci, J. and de Giorgi, L., 2010. Microgravimetric and ground penetrating radar geophysical methods to map the shallow karstic cavities network in a coastal area (Marina Di Capilungo, Lecce, Italy). Exploration Geophysics, 41, 178-188.
[26] Al-Zoubi, A., Eppelbaum, L., Abueladas, A., Ezersky, M. and Akkawi, E., 2013. Methods for removing regional trends in microgravity under complex environments: testing on 3D model examples and investigation in the Dead Sea coast. International Journal of Geophysics, Vol. 2013, Article ID 341797, 1-13,
[27] Zhou W., Li, J. and Du, X., 2014. Semiautomatic interpretation of microgravity data from subsurface cavities using curvature gradient tensor matrix. Near Surface Geophysics, 12, 579-586.
[28] Glosson, D. and Karaki, N.A., 2009. Salt karst and tectonics: sinkholes development along tension cracks between parallel strike-slip faults, Dead Sea, Jordan. Earth Surface Processes and Landforms, 34, 1408-1421.
[29] Deroussi, S, Diament, M., Feret, J.B., Nebut, T. and Staudacher, Th., 2009. Localization of cavities in a thick lava flow by microgravimetry. Journal of Volcanology and Geothermal Research, 184,193-198.
[30] Rosas-Carbajal, M., Jourde, K., Marteau, J., Deroussi, S., Komorowski, J.-C., and Gibert, D., 2017. Three-dimensional density structure of La Soufrère de Guadeloupe lava dome from simultaneous muon radiographies and gravity data. Geophysical Research Letters, 1-9, 0.1002/2017GL074285.
[31] Elawadi, E., Salem, A. and Ushijima, K., 2001. Detection of cavities and tunnels from gravity data using a neural network. Exploration Geophysics, 32, 204-208.
[32] Wilson, S.S., Crawford, N.C., Croft, L.A., Howard, M., Miller, S., Rippy, T., 2006. Autonomous Robot for Detecting Subsurface Voids and Tunnels using Microgravity. Proc. of SPIE, Vol. 6201, 620111-1, 1-9, doi: 10.1117/12.665030.
[33] Blecha, V. and Mašin, D., 2013. Observed and calculated gravity anomalies above a tunnel driven in clays – implication for errors in gravity interpretation. Near Surface Geophysics, 11, 569-578.
[34] Eppelbaum, L.V., 2013. Non-stochastic long-term prediction model for US tornado level. Natural Hazards, 69, No. 3, 2269-2278.
[35] Eppelbaum, L. and Isakov, A., 2015. Implementation of the geo-correlation methodology for predictability of catastrophic weather events: long-term US tornado season and short-term hurricanes. Environmental Earth Sciences, 74, 3371-3383.
[36] Lakshmanan, J. and Montlucon, J., 1987. Microgravity probes the Great Pyramide. The Leading Edge, No. 1, 10-17.
[37] Linford, N.T., 1998. Geophysical survey at Boden Vean, Cornwall, including an assessment of the microgravity technique for the location of suspected archaeological void features. Archaeometry, 40, No. 1, 187-216.
[38] Slepak, Z., 1999. Electromagnetic sounding and high precision gravimeter survey define ancient stone building remains in the territory of Kazan Kremlin (Kazan, Republic of Tatarstan, Russia). Archaeological Prospection, 6, 147-160.
[39] Di Filippo, M., Santoro, S. and Toro, B., 2005. Microgravity survey of Roman Amphitheatre of Durres (Albania). Trans. of 6th Archaeological Prospection, Rome (Italy), 1-4.
[40] Abad, Ir.R., García, F.G., Abad, Is.R., Blanco, M.R., Conesa, J.L.M., Marco, J.B. and Lladro, R.C., 2007. Non-destructive assessment of a buried rainwater cistern at the Carthusian Monastery ‘Vall de Crist’ (Spain, 14th century) derived by microgravimetric 2D modeling. Journal of Cultural Heritage, 8, 197-201.
[41] Castiello, G., Florio, G., Grimaldi, M. and Fedi, M., 2010. Enhanced methods for interpreting microgravity anomalies in urban areas. First Break, 28, No. 8, 93-98.
[42] Eppelbaum, L.V., 2010. Archaeological geophysics in Israel: Past, Present and Future. Advances in Geosciences, 24, 45-68.
[43] Eppelbaum, L.V., 2013b. Potential geophysical fields – inexpensive effective interpretation tool at archaeological sites in the Near East. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 3, 23-42.
[44] Padin, J., Martin, A. and Anquela, A.B., 2012. Archaeological microgravimetric prospection inside don church (Valencia, Spain). Archaeological Prospection, 39, 547-554.
[45] van Gelderen, M., Haagmans, R. and Bilker, M., 1999. Gravity changes and natural gas extraction in Groningen. Geophysical Prospecting, 47, 979-993.
[46] Bate, D., 2005. 4D reservoir volumetrics: A case study over the Izaute gas storage facility. First Break, 23, Mo. 11, 69-71.
[47] Eiken, O., Stenvold, T., Zumberge, M., Alnes, H. and Sasagawa, G., 2008. Gravimetric monitoring of gas production from the Troll field. Geophysics, 73, No. 6, WA149–WA154.
[48] Ferguson, J.F., Chen, T., Brady, J., Aiken, C.L.V. and Seibert, J., 2007. The 4D microgravity method for waterflood surveillance II — Gravity measurements for the Prudhoe Bay reservoir, Alaska. Geophysics, 72, No. 2, I33-I43.
[49] Kazama, T. and Okubo, S., 2009. Hydrological modeling of groundwater disturbances to observed gravity: Theory and application to Asama Volcano, Central Japan. Journal of Geophysical Research, 114, 1-11, B08402.
[50] Creutzfeldt, B., Güntner, A., Wziontek, H. and Merz, B., 2010. Reducing local hydrology from high-precision gravity measurements: a lysimeter-based approach. Geophysical Journal International, 183, 178-187.
[51] Eppelbaum, L., Yakubov, Ya. and Ezersky, M., 2010. Method for comprehensive computing of water flows geodynamics in the Dead Sea basin. Trans. of the XXXV EGS Meet., Zurich, Switzerland, P24, 1-4.
[52] Rymer, H., 2016. Gravity measurements on chips. Nature, 531, 585-586.
[53] Imanishi, Y., Sato, T., Higashi, T., Sun, W. and Okubo, S., 2004. A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science, 306 (5695), 476-478, doi: 10.1126/science.1101875.
[54] Dobrovolsky, I.P., 2005. Gravity precursors of the tectonics earthquake. Physics of the Earth, Izv. Russ. Acad. Sci., 4, 23-28.
[55] Cambiotti, G. and Sabadini, R., 2013. Gravitational seismology retrieving Centroid-Moment-Tensor solution of the 2011 Tohoku earthquake. Jour. of Geophysical Research, 118, 1-12, doi: 10.1029/2012JB009555.
[56] Chen, S., Jiang, C.S. and Zhuang J.C., 2015. Statistical evaluation of efficiency and possibility of earthquake predictions with gravity field variations and its analytic signal in western China. Pure & Appl. Geophys., 1-15, doi: 10.1007/s00024-015-1114-x.
[57] Telesca, L., Lovallo, M., Mammadov, S., Kadirov, F. and Babayev, G., 2015. Power spectrum analysis and multifractal detrended fluctuation analysis of Earth’s gravity time series. Physica A: Statistical Mechanics and its Applications, 248, 426-434.
[58] Sobisevich, A.L., Sobisevich, L.E., Kanonidi, K.H. and Likhodeyev, D.B., 2017. On the gravity-magnetic disturbances preceding the seismic events. Doklady Russ. Acad. Sci., 475, No. 4, 444-447.
[59] Battaglia, M., Gottsman, J., Carbone, D. and Fernandez, J., 2008. 4D volcano gravimetry. Geophysics, 73, No.6, WA3-WA18.
[60] Rymer, H., Locke, S.A., Borgia, A., Martinez, M., Brenes, J., Van der Laat, R. and Williams-Jone, G., 2009. Long-term fluctuations in volcanic activity: implications for future environmental impact. Terra Nova, 21, No. 4, 304–309.
[61] Greco, F., Currenti, G., Del Negro, C., Napoli, R., Budetta, G., Fedi, M. and Boschi, E., 2010. Spatiotemporal gravity variations to look deep into the southern flank of Etna volcano. Journal of Geophysical Research, 115, B11411, doi: 10.1029/2009JB006835.
[62] Aparicio, S.S.-M., Sampedro, J.A., Montesinos, F.G. and Molist, J.M., 2011. Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands). Journal of Geophysical Research: Solid Earth, 5033-5051, doi: 10.1002/2013JB010795.
[63] Zurek, J., William-Jones, G., Johnson, D. and Eggers, A., 2012. Constraining volcanic inflation at Three Sisters Volcanic Field in Oregon, USA, through microgravity and deformation modeling. Geochemistry, Geophysics, Geosystems, 3, No. 10, 1-15, doi: 10.1029/2012GC004341.
[64] Alizadeh, A. A., Guliyev, I. S., Kadirov, F. A. and Eppelbaum, L. V., 2016. Geosciences of Azerbaijan. Volumes I & II. Springer, Heidelberg – N.Y. – London.
[65] Poltoratsky, V.V. and Ginzburg, S.N., 1989. Gravity prospecting. In: (Brodovoi, V.V., Ed.) Borehole and Mining Geophysics, Vol II. Nedra, Moscow, 190-209 (in Russian).
[66] Madej, J., 2017. Gravimetric surveys for assessing rock mass condition around a mine shaft. Acta Geophysica, 65, 465-479.
[67] Nettleton, L.L., 1976. Gravity and Magnetics in Oil Prospecting. McGraw-Hill, N.Y.
[68] Berezkin, V.M., 1988. Total Gradient Method in Geophysical Prospecting. Nedra, Moscow (in Russian).
[69] Tzimelzon, I.O., 1965. Earth’s crust deep structure and tectonics of Azerbaijan by geophysical data. Soviet Geology, No. 4, 103-111 (in Russian).
[70] Gadirov, V.G. and Eppelbaum, L.V., 2012. Detailed gravity, magnetics successful in exploring Azerbaijan onshore areas. Oil and Gas Journal, 110, No. 11, 60-73.
[71] Leonov, Yu.G. (Ed.), 2008. The Greater Caucasus in the Alpine Epoch. Geos, Moscow (in Russian).
[72] Eppelbaum, L.V., 2015. Comparison of 3D integrated geophysical modeling in the South Caucasian and Eastern Mediterranean segments of the Alpine-Himalayan tectonic belt. Izv. Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 3, 25-45.
[73] Khain, V.E., 2001. Tectonics of Continents and Oceans. Scientific World, Moscow (in Russian).
[74] Eppelbaum, L. and Khesin, B., 2011. Development of 3-D gravity-magnetic models of Earth’s crust of Azerbaijan and adjacent areas: A generalized review. Positioning, 2, No. 2, 84-102.
[75] Pavlenkova, G.A., 2012. Structure of the Caucasus’ earth crust along the deep seismic sounding profiles Stepnoe-Bakuriani and Volgograd-Nakhchevan (results of initial data re-interpretation). Izvestiya, Physics of the Earth, No. 5, 16-25.
[76] Pilchin, A.N. and Eppelbaum, L.V., 1997. Determination of magnetized bodies lower edges by using geothermal data. Geophysical Journal International, 128, No. 1, 167-174.
[77] Ben-Avraham, Z., Ginzburg, A., Makris, J. and Eppelbaum, L., 2002. Crustal structure of the Levant basin, Eastern Mediterranean. Tectonophysics, 346, 23-43.
[78] Rotstein, Y. and Bartov, Y. 1989. Seismic reflection across a continental transform: An example from a convergent segment of the Dead Sea rift. Jour. of Geophys. Research, 94, 2902-2912.
[79] Rotstein, Y., Bartov, Y., Freislander, U. 1992. Evidence for local shifting of the main fault and changes in the structural setting, Kinarot basin, Dead Sea transform. Geology, 20, 251-254.
[80] Ben-Avraham, Z., Ten-Brink, U., Bell, R. and Reznikov, M., 1996. Gravity field over the Sea of Galilee: evidence for a composite basin along a transform fault. Jour. Geophys. Research, 101, 533-544.
[81] Eppelbaum, L. V. and Pilchin, A. N., 2006. Methodology of Curie discontinuity map development for regions with low thermal characteristics: An example from Israel. Earth and Planetary Sciences Letters, 243, No. 3-4, 536-551.
[82] Eppelbaum, L.V., Ben-Avraham, Z. and Katz, Y.I., 2007. Structure of the Sea of Galilee and Kinarot Valley derived from combined geological-geophysical analysis. First Break, 25, No. 1, 21-28.
[83] Meiler, M., Reshef, M. and Shulman, H. 2011. Seismic depth-domain stratigraphic classification of the Golan Heights, central Dead Sea Fault. Tectonophysics, 510, 354-369.
[84] Ben-Avraham, Z., Rozenthal, M., Tibor, G., Navon, H., Wust-Bloch, H., Hofstetter, R., Rybakov, M., 2014. In: Structure and Tectonic Development of the Kinneret Basin (Ed. T. Zohary et al.) Lake Kinneret, Ecology and Management, Aquatic Ecology Series 6, Springer, 19-38.
[85] Stern, R. J., Johnson, P. R., Kroner, A. and Yibas, B., 2004. Neoproterozoic ophiolites of the Arabian-Nubian Shield. Developments in Precambrian Geology, 13, 95-128.
[86] Johnson, P.R. and Kattan, F.H., 2008. Lithostratigraphic revision in the Arabian shield: The impacts of geochronology and tectonic analysis. The Arabian Jour. for Science and Engin., 33, No. 1, 3-16.
[87] Gurevich, E.L., 1981. Paleomagnetism of Upper Precambrian rocks of Irkutian amphitheatre; Problems of their correlation and paleogeographic location. In: Paleomagnetism and Problems of Paleogeography, Transactions of VNIGRI, 11-22 (in Russian).
[88] Molostovsky, E.A., Molostovsky, I.I. and Minikh, M.G. 1998. Stratigraphic correlations of the Upper Permian and Triassic beds from the Volga-Ural and Cis-Caspian. In: (Crasquin-Soleau, S. and Barrier, E´., Eds.) Peri-Tethys memoir 3: Stratigraphy and Evolution of Peri-Tethyan platforms. Me´moires du Muse´um national d’histoire naturelle, Paris, 177, 35-44.
[89] Ben-Avraham, Z., 1978. The structure and tectonic setting of the Levant continental margin, Eastern Mediterranean. Tectonophysics, 46, 313-331.
[90] Robertson, A. H. F. and Dixon, J.E., 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In: (Dixon J.E., Robertson A.H.F., Eds.), The Geological Evolution of the Eastern Mediterranean, Geological Society Special Publ. No. 17, 1-74.
[91] Ben-Avraham, Z. and Ginzburg, A., 1990. Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean. Tectonics, 9, 613-622.
[92] Hall, J. K., Krasheninnikov, V. A., Hirsch, F., Benjamini, C. and Flexer, A. (Eds.), 2005. Geological framework of the Levant, Volume II: The Levantine Basin and Israel, Jerusalem.
[93] Krasheninnikov, V. A., Hall, J. K., F. Hirsch, H. Benjamini, and A. Flexer (Eds.), 2005. Geological Framework of the Levant, Volume 1: Cyprus and Syria, Jerusalem.
[94] Ben-Avraham, Z., Schattner, U., Lazar, M., Hall, J. K., Ben-Gai, Y., Neev, D. and Reshef, M., 2006. Segmentation of the Levant continental margin, eastern Mediterranean. Tectonics, 25, TC5002, 1-17.
[95] Reilinger, R. E., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A. Filikov, S. V., Gomez, F., Al-Ghazzi, R. and Karam, G., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Jour. of Geophysical Research, BO5411, 1-26, doi: 10.1029/2005JB004051.
[96] Le Pichon, X. and Kreemer, C., 2010. The Miocene-to-present kinematic evolution of the Eastern Mediterranean and Middle East and its implications for Dynamics. Annu. Rev. Earth Planet. Sci., 38, 323-351.
[97] Eppelbaum, L. and Katz, Y., 2011. Tectonic-Geophysical Mapping of Israel and eastern Mediterranean: Implication for Hydrocarbon Prospecting. Positioning, 2, No. 1, doi: 10.4236/pos.2011.21004, 36-54.
[98] Eppelbaum, L.V. and Katz, Yu.I., 2015. Eastern Mediterranean: Combined geological-geophysical zonation and paleogeodynamics of the Mesozoic and Cenozoic structural-sedimentation stages. Marine and Petroleum Geology, 65, 198-216.
[99] Eppelbaum, L.V. and Katz, Y.I., 2012. Key features of seismo-neotectonic pattern of the Eastern Mediterranean. Izvestiya Acad. Sci. Azerb. Rep., Ser.: Earth Sciences, No. 3, 29-40.
[100] Schenk, C.J., Kirschbaum, M.A., Charpentier, R.R., Klett, T.R., Brownfield, M.E., Pitman, J.K., Cook T.A. and Tennyson M.E., 2010. Assessment of undiscovered oil and gas resources of the Levant Basin Province, Eastern Mediterranean. U.S. Geological Survey Fact Sheet 2010-3014, 1-4.
[101] Eppelbaum, L.V., Katz, Y.I. and Ben-Avraham, Z., 2012. Israel – Petroleum Geology and Prospective Provinces. AAPG European Newsletter, No. 4, 4-9.
[102] Montadert, L., Nicolaides, S., Semb, P.H., Lie, Ø., 2014. Petroleum systems offshore Cyprus. In: (Marlow, L., Kendall, C. and Yose, L., Eds.), Petroleum Systems of the Tethyan Region, AAPG Memoir 106, 301-334.
[103] Eppelbaum, L.V. and Katz, Yu.I., 2016. Tectono-Geophysical Zonation of the Near and Middle East and Eastern Africa. International Journal of Geology, 10, 1-10.
[104] Li, Y., Braitenberg, C. and Yang, Y., 2013. Interpretation of gravity data by the continuous wavelet transform: The case of the Chad lineament (North-Central Africa). Journal of Applied Geophysics, 90, 62-70.
[105] Klokočník, J., Kostelecký, J., Eppelbaum, L. and Bezděk, A., 2014. Gravity disturbances, the Marussi tensor, invariants and other functions of the geopotential represented by EGM 2008. Journal of Earth Science Research, 2, No. 3, 88-101.
[106] Klokočník, J., Kostelecký, J., Bezděk, A., Cílek, V. and Peŝek, I., 2017. A support for the existence of paleolakes and paleorivers buried under Saharan sand by means of “gravitational signal” from EIGEN 6C4. Arabian Journal of Geosciences, 10, 1-28.
[107] Sandwell, D.T. and Smith, W.H.F., 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge Segmentation versus spreading rate. Journal of Geophysical Research, 114, B01411, 1-18.
[108] De Mauro, A., Greco, M. and Grimaldi, M., 2016. A formal definition of Big Data based on its essential features. Library Review, 65, No. 3, 122-135.
[109] Rathore, M. M., Ahmad, A., Paul, A., Hong, W.-H. and Seo, H., 2017. Advanced computing model for geosocial media using big data analytics. Multimed Tools Appl., doi: 10.1007/s11042-017-4644-7, 1-21.
[110] Khain, V.E., 1984. Regional Geodynamics. Alpine Mediterranean Belt. Nedra, Moscow (in Russian).
[111] Sharkov, E., Lebedev, V., Chugaevm A., Zabarinskaya, L., Rodnikov, A., Sergeeva, N. and Safonova, I., 2015. The Caucasian-Arabian segment of the Alpine-Himalayan collisional belt: Geology, volcanism and neotectonics. Geoscience Frontiers, 6, No. 4, 513-522.
[112] Eppelbaum, L.V. and Katz, Yu.I., 2017. A New Regard on the Tectonic Map of the Arabian-African Region Inferred from the Satellite Gravity Analysis. Acta Geophysica, doi: 10.1007/s11600-017-0057-2, 1-20.
[113] Petrov, A.V., Zinovkin, S.V., Osipenkov, D.Yu. and Yudin, D.B., 2011. Computer technology of statistical and spectrum-correlation data analysis KOSKAD 3D 2011. Geoinformatics, No. 4, 7-13 (in Russian).
[114] Véronnet, A., 1912. Rotation de l’Ellipsoide Hétérogène et Figure Exacte de la Terre. J. Math. Pures et Appl., Ser. 6, 8, 331-463.