Detailed Computation of Air-Conditioning Modality within Chimpanzee Nasal Airways

Detailed Computation of Air-Conditioning Modality within Chimpanzee Nasal Airways

Kaouthar Samarat1,*, Sho Hanida2, Shigeru Ishikawa3, Kazunori Kotani4 and Teruo Matsuzawa4

1Ishikawa Resin Industry Co., Ltd., Ta 1-8 Utani, Kaga-shi, Ishikawa 922-0312, Japan; 2Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi-shi, Ishikawa 921- 8501, Japan; 3Kanazawa Municipal Hospital, 3-7-3 Heiwamachi, Kanazawa-shi, Ishikawa 921-8105, Japan; 4Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi-shi, Ishikawa 923-1292, Japan

International Journal of Biomedical Engineering Research

Nasal cavity of primates and other animals has been reported in many research works. Lots of the previous studies focused on the nasal airflow but few of them considered the internal nasal air-conditioning phenomena. In this study, we investigated the air-conditioning modality within an anatomically accurate computer nasal airways model of a healthy female adult chimpanzee. The finite volumes method was used to compute a steady laminar inspiratory flow with physiological flow rate of 1.4 m/s, mimicking breathing at rest state. Detailed distributions of air-conditioning in lower, middle and upper airways of the left and right nasal cavities were investigated. The numerical simulation revealed that air-conditioning pattern inside the chimpanzee nasal cavity varies depending to the nasal topology.

Keywords: Chimpanzee nasal cavity; Computational fluid dynamics; Nasal air-conditioning.

Free Full-text PDF

How to cite this article:
Kaouthar Samarat, Sho Hanida, Shigeru Ishikawa, Kazunori Kotani, Teruo Matsuzawa.Detailed Computation of Air-Conditioning Modality within Chimpanzee Nasal Airways.International Journal of Biomedical Engineering Research, 2018, 2:6. DOI: 10.28933/ijber-2018-06-1901


1.Cole, P. Modification of inspired air. In The nose: upper airway physiology and atmospheric environment, Proctor, D., Andersen, I., Eds.; Elsevier Biomedical Press: Amsterdam, Netherlands, 1982; pp. 350–375, ISBN 9780444803771.
2. Riazuddin, V. N.; Zubair, M.; Abdullah, M. Z.; Ismail, R.; Shuaib, I. L.; Abdulhamid, S.; Ahmad, K. A. Numerical study of inspiratory and expiratory flow in a human nasal cavity. J Med Biol Eng 2010, 31, pp. 201–206, DOI 10.5405/jmbe.781.
3. Zubair, M.; Riazuddin, V. N.; Abdullah, M. Z.; Ismail, R.; Shuaib, I. L. Airflow inside the nasal cavity-visualization using computational fluid dynamics. Asian Biomed 2010, 4, pp. 657–661.
4. Kepler, G. M.; Richardson, R. B.; Morgan, K. T.; Kimbell, J. S. Computer Simulation of Inspiratory Nasal Airflow and Inhaled Gas Uptake in a Rhesus Monkey. Toxicol. Appl. Pharmacol. 1998, 150, pp. 1–11, DOI 10.1006/taap.1997.8350.
5. Kimbell, J. S.; Subramaniam, R. P.; Gross, E. A.; Schlosser, P. M.; Morgan, K. T. Dosimetry Modeling of Inhaled Formaldehyde: Comparisons of Local Flux Predictions in the Rat, Monkey, and Human Nasal Passages. Toxicological Sciences 2001, 64, pp. 100–110, DOI 10.1093/toxsci/64.1.100
6. Craven, B. A.; Patterson, E. G.; Settles, G. S. The fluid dynamics of canine olfaction: unique nasal airflow patterns as an explanation of macrosmia. J R Soc Interface 2010, 7, pp. 933–943, DOI 10.1098/rsif.2009.0490.
7. Lawson, M. J.; Craven, B. A.; Paterson, E. G.; Settles, G. S. A computational study of odorant transport and deposition in the canine nasal cavity: implications for olfaction. Chem Senses 2012, 37, pp. 553–566, DOI 10.1093/chemse/bjs039.
8. Corley, R. A.; Minard, K. R.; Kabilan, S.; Einstein, D. R.; Kupart, A. P. Magnetic resonance imaging and computational fluid dynamics (CFD) simulations of rabbit nasal airflows for the development of hybrid CFD/PBPK models. Inhal Toxicol 2009, 21, pp. 512–518, DOI 10.1080/08958370802598005.
9. Yang, G. C.; Scherer, P. W.; Mozell, M. M. Modeling inspiratory and expiratory steady-state velocity fields in the Sprague-Dawley rat nasal cavity. Chem Senses 2007, 32, pp. 215–223, DOI 10.1093/chemse/bjl047.
10. Zehong, W.; Zhixiang, X.; Bo, L.; Fuqiang, X. Numerical simulation of airway dimension effects on airflow patterns and odorant deposition patterns in the rat nasal cavity. PLoS ONE 2013, 8, DOI 10.1371/journal.pone.0077570.
11. Mori, F.; Hanida, S.; Kumahata, K.; Miyabe–Nishiwaki, T.; Suzuki, J.; Matsuzawa, T. Minor contributions of the maxillary sinus to the air-conditioning performance in macaque monkeys. J Exp Biol. 2015, 218, pp. 2394–2401, DOI 10.1242/jeb.118059.
12. Nishimura, T.; Mori, F.; Hanida, S.; Kumahata, K.; Ishikawa, S. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo. PLoS Comput Biol 2016, 12, DOI 10.1371/journal.pcbi.1004807.
13. Matsuzawa, T., Tomonaga, M., & Tanaka, M. (Eds.). Cognitive development in chimpanzees; Springer: Tokyo, Japan, 2006; ISBN 978-4-431-30246-9.
14. Samarat, K., Matsuzawa, T. A Computational Model of the Anatomy of Realistic Chimpanzee Nasal Airways. IJIR 2016, 2, pp. 357–364.
15. Kumahata, K.; Mori, F.; Ishikawa, S.; Matsuzawa, T. Nasal flow simulation using heat and humidity models. J Biomech Sci Engineer 2010, 5, pp. 565–577, DOI 10.1299/jbse.5.565.
16. Samarat, K.; Kumahata, K.; Hanida, S.; Nishimura, T.; Mori, F.; Ishikawa, S.; Matsuzawa, T. Application of computational fluid dynamics to simulate a steady airflow in all regions of chimpanzee nasal cavity. In Procedia Engineering, Proceedings of the 25th International Conference on Parallel Computational Fluid Dynamics, Changsha, China, May 20-24; Kenli Li, Matthew Smith, Mariano Vazquez (Eds.); Elsevier Ltd.: 2013; pp. 264–269.
17. Worthington, J.; Young, I. S.; and Altringham, J. D. The relationship between body-mass and ventilation rate in mammals. J. Exp. Biol. 1991, 161, pp. 533-536.
18. Stahl, W. R. Scaling of respiratory variables in mammals. J. Appl. Physiol. 1967, 22, pp. 453-460.
19. House, E. L., Pansky, B., Jacobs, M. S., & Wagner, B. M. (1966). Gross structure of the ear, nasal cavity and paranasal sinuses of the Chimpanzee. Anatomical Record, 155(1), 77–88.