The potential use of Mentha x piperita L., Peumus boldus Mol. and Baccharis trimera Iless. extracts as functional food ingredients


The potential use of Mentha x piperita L., Peumus boldus Mol. and Baccharis trimera Iless. extracts as functional food ingredients


Agustina Irazustaa, Russell Caccavellob, Luis Panizzoloa, Alejandro Gugliucci b, Alejandra Medrano *a

a Laboratorio de Bioactividad y Nanotecnología de Alimentos. Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Udelar, Uruguay;
b Glycation, Oxidation and Disease Laboratory, Dept. of Research, College of Osteopathic Medicine, Touro University-California, Vallejo, CA, USA


International Journal of Food and Nutrition Research

We studied the comparative antioxidant and anti-glycation activities of Mentha x piperita L., Baccharis trimera Iless. and Peumus boldus Mol, in order to evaluate their potential interest as ingredients in functional foods. The total content of polyphenol compounds was determined by Folin-Ciocalteau assay as their antioxidant and anti-glycation capacities, using ABTS and ORAC for the first one and a model with methylglyoxal and bovine serum albumin for the latter. Then, paraoxonase 1 (PON 1) arylesterase activity was measured as well as apolipoprotein A-1 (ApoA-1) structure by SDS-PAGE, in the presence of an oxidative agent and the herbal extracts. Finally, the same procedure was applied to high density lipoprotein (HDL) particles using a Lipoprint kit. Results show that herbal extracts have a considerable amount of total polyphenols, thus a high antioxidant activity and a considerable anti-glycation activity. Furthermore, these extracts restore PON 1 activity as well as the original configuration of apoA-1 and the distribution of HDL subclasses, favouring anti-atherogenic particles. These herbal extracts are interesting targets to use as ingredients in functional foods.


Keywords: Antioxidant, Advanced glycation, Mentha x piperita L., Peumus boldus Mol., Baccharis trimera Iless.


Free Full-text PDF


How to cite this article:
Agustina Irazusta, Russell Caccavello, Luis Panizzolo, Alejandro Gugliucci, Alejandra Medrano. The potential use of Mentha x piperita L., Peumus boldus Mol. and Baccharis trimera Iless. extracts as functional food ingredients. International Journal of Food and Nutrition Research, 2018; 2:14.  DOI: 10.28933/ijfnr-2018-09-1001


References:

1. World Health Organization, Noncommunicable diseases, (2018) 1. http://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases.
2. J. Uribarri, S. Woodruff, S. Goodman, W. Cai, X. Chen, R. Pyzik, A. Yong, G.E. Striker, H. Vlassara, Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet, J. Am. Diet. Assoc. 110 (2010) 911–916.e12. doi:10.1016/j.jada.2010.03.018.
3. J. Uribarri, M. Dolores, M. Pía, D. Maza, R. Filip, A. Gugliucci, C. Luevano-, M.H. Macías-cervantes, D.H.M. Bastos, A. Medrano, T. Menini, M. Portero-otin, A. Rojas, G.R. Sampaio, K. Wrobel, K. Wrobel, Dietary Advanced Glycation End Products and Their Role in Health and Disease 1 , 2, Adv. Nutr. 6 (2015) 461–473. doi:10.3945/an.115.008433.(RAGEs).
4. A.J. Taylor, T.C. Villines, Atherosclerosis: Clinical Perspectives Through Imaging, Springer-Verlag London, London, 2013. doi:10.1007/978-1-4471-4288-1.
5. A. Qahtany, F.H. M, H. Al Shali, A.A. Bayamin, Atherosclerosis : Pathophysiology and Management, 70 (2018) 82–87. doi:10.12816/0042966.
6. P. Libby, P.M. Ridker, G.K. Hansson, Inflammation in Atherosclerosis. From Pathophysiology to Practice, J. Am. Coll. Cardiol. 54 (2009) 2129–2138. doi:10.1016/j.jacc.2009.09.009.
7. M. Aviram, M. Rosenblat, C.L. Bisgaier, R.S. Newton, S.L. Primo-Parmo, B.N. La Du, Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: A possible peroxidative role for paraoxonase, J. Clin. Invest. 101 (1998) 1581–1590. doi:10.1172/JCI1649.
8. R.S. Rosenson, H.B. Brewer, M.J. Chapman, S. Fazio, M.M. Hussain, A. Kontush, R.M. Krauss, J.D. Otvos, A.T. Remaley, E.J. Schaefer, HDL measures, particle heterogeneity, proposed nomenclature, and relation to atherosclerotic cardiovascular events, Clin. Chem. 57 (2011) 392–410. doi:10.1373/clinchem.2010.155333.
9. C. Bergmeier, R. Siekmeier, W. Gross, Distribution spectrum of paraoxonase activity in HDL fractions, Clin. Chem. 50 (2004) 2309–2315. doi:10.1373/clinchem.2004.034439.
10. W.V. Brown, H.B. Brewer, D.J. Rader, E.J. Schaefer, HDL as a treatment target†, J. Clin. Lipidol. 4 (2010) 5–16. doi:10.1016/j.jacl.2009.12.005.
11. A. Gugliucci, Paraoxonase 1 and Its Clinical Relevance, HDL Handb. Biol. Funct. Clin. Implic. Third Ed. (2017) 187–208. doi:10.1016/B978-0-12-812513-7.00009-4.
12. M.I. Mackness, B. Mackness, P.N. Durrington, Paraoxonase and coronary heart disease, Atheroscler. Suppl. 3 (2002) 49–55. doi:https://doi.org/10.1016/S1567-5688(02)00046-6.
13. B. Mackness, P.N. Durrington, M.I. Mackness, Human Serum Paraoxonase, Gen. Pharmacol. Vasc. Syst. 31 (1998) 329–336. doi:10.1016/S0306-3623(98)00028-7.
14. T.F. Dantoine, J. Debord, J.P. Charmes, L. Merle, P. Marquet, G. Lachatre, C. Leroux-Robert, Decrease of serum paraoxonase activity in chronic renal failure., J. Am. Soc. Nephrol. 9 (1998) 2082–8. http://www.ncbi.nlm.nih.gov/pubmed/9808094.
15. S.-A.P. Karabina, A.N. Lehner, E. Frank, S. Parthasarathy, N. Santanam, Oxidative inactivation of paraoxonase—implications in diabetes mellitus and atherosclerosis, Biochim. Biophys. Acta – Gen. Subj. 1725 (2005) 213–221. doi:https://doi.org/10.1016/j.bbagen.2005.07.005.
16. A. Gugliucci, R. Hermo, M. Tsuji, S. Kimura, Lower serum paraoxonase-I activity in type 2 diabetic patients correlates with nitrated apolipoprotein A-I levels, 2006. doi:10.1016/j.cca.2006.01.011.
17. A. Kontush, M.J. Chapman, Antiatherogenic function of HDL particle subpopulations: Focus on antioxidative activities, Curr. Opin. Lipidol. 21 (2010) 312–318. doi:10.1097/MOL.0b013e32833bcdc1.
18. M.E. Embuscado, Spices and herbs: Natural sources of antioxidants – A mini review, J. Funct. Foods. 18 (2015) 811–819. doi:10.1016/j.jff.2015.03.005.
19. M.G. Figueroa Pérez, N.E. Rocha-Guzmán, E. Mercado-Silva, G. Loarca-Piña, R. Reynoso-Camacho, Effect of chemical elicitors on peppermint (Mentha piperita) plants and their impact on the metabolite profile and antioxidant capacity of resulting infusions, Food Chem. 156 (2014) 273–278. doi:10.1016/j.foodchem.2014.01.101.
20. S. Najafian, M. Moradi, M. Sepehrimanesh, Polyphenolic contents and antioxidant activities of two medicinal plant species, Mentha piperita and Stevia rebaudiana, cultivated in Iran, Comp. Clin. Path. 25 (2016) 743–747. doi:10.1007/s00580-016-2258-5.
21. E. Uribe, D. Marín, A. Vega-Gálvez, I. Quispe-Fuentes, A. Rodríguez, Assessment of vacuum-dried peppermint (Mentha piperita L.) as a source of natural antioxidants, Food Chem. 190 (2016) 559–565. doi:10.1016/j.foodchem.2015.05.108.
22. P. O’Brien, C. Carrasco-Pozo, H. Speisky, Boldine and its antioxidant or health-promoting properties, Chem. Biol. Interact. 159 (2006) 1–17. doi:10.1016/j.cbi.2005.09.002.
23. C. Soto, E. Caballero, E. Pérez, M.E. Zúñiga, Effect of extraction conditions on total phenolic content and antioxidant capacity of pretreated wild Peumus boldus leaves from Chile, Food Bioprod. Process. 92 (2014) 328–333. doi:10.1016/j.fbp.2013.06.002.
24. C. Vargas Klimaczewski, R. de Aquino Saraiva, D.H. Roos, A. Boligon, M. Linde Athayde, J.P. Kamdem, N. Vargas Barbosa, J.B. Teixeira Rocha, Antioxidant activity of Peumus boldus extract and alkaloid boldine against damage induced by Fe(II)-citrate in rat liver mitochondria in vitro, Ind. Crops Prod. 54 (2014) 240–247. doi:10.1016/j.indcrop.2013.11.051.
25. B.C. Bremer Boaventura, E.L. da Silva, R.H. Liu, E.S. Prudêncio, P.F. Di Pietro, A.M. Becker, R.D. de M.C. Amboni, Effect of yerba mate (Ilex paraguariensis A. St. Hil.) infusion obtained by freeze concentration technology on antioxidant status of healthy individuals, LWT – Food Sci. Technol. 62 (2015) 948–954. doi:10.1016/j.lwt.2015.02.028.
26. A.C. Colpo, H. Rosa, M.E. Lima, C.E.F. Pazzini, V.B. De Camargo, F.E.M. Bassante, R. Puntel, D.S. Ávila, A. Mendez, V. Folmer, Yerba mate (Ilex paraguariensis St. Hill.)-based beverages: How successive extraction influences the extract composition and its capacity to chelate iron and scavenge free radicals, Food Chem. 209 (2016) 185–195. doi:10.1016/j.foodchem.2016.04.059.
27. L. Ghassan Riachi, C.A. Bastos De Maria, Yerba mate: An overview of physiological effects in humans, J. Funct. Foods. 38 (2017) 308–320. doi:10.1016/j.jff.2017.09.020.
28. R. Mateos, G. Baeza, B. Sarriá, L. Bravo, Improved LC-MSncharacterization of hydroxycinnamic acid derivatives and flavonols in different commercial mate (Ilex paraguariensis) brands. Quantification of polyphenols, methylxanthines, and antioxidant activity, Food Chem. 241 (2018) 232–241. doi:10.1016/j.foodchem.2017.08.085.
29. A. Gugliucci, D.H.M. Bastos, J. Schulze, M.F.F. Souza, Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE generation by methylglyoxal in model proteins, Fitoterapia. 80 (2009) 339–344. doi:10.1016/j.fitote.2009.04.007.
30. Y. Bains, A. Gugliucci, R. Caccavello, Advanced glycation endproducts form during ovalbumin digestion in the presence of fructose: Inhibition by chlorogenic acid, Fitoterapia. 120 (2017) 1–5. doi:10.1016/j.fitote.2017.05.003.
31. L. DeChristopher, Consumption of Fructose and High Fructose Corn Syrup: Is “Fructositis” triggered bronchitis, asthma, & auto-immune reactivity merely a side bar in the Etiology of Metabolic Syndrome II (to be defined)? – Evidence and a Hypothesis., (2012). file:///C:/Users/Nuria/Downloads/Fructositis Disease LRDC Hypothesis & Thesis Project.pdf.
32. T. Menini, C. Heck, J. Schulze, E. De Mejia, A. Gugliucci, Protective action of Ilex paraguariensis extract against free radical inactivation of paraoxonase-1 in high-density lipoprotein, Planta Med. 73 (2007) 1141–1147. doi:10.1055/s-2007-981585.
33. K. Slinkard, V. L. Singleton, Total Phenol Analysis: Automation and Comparison with Manual Methods, 1977.
34. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med. 26 (1999) 1231–1237. doi:https://doi.org/10.1016/S0891-5849(98)00315-3.
35. B. Ou, M. Hampsch-Woodill, R.L. Prior, Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe, J. Agric. Food Chem. 49 (2001) 4619–4626. doi:10.1021/jf010586o.
36. A. Dávalos, B. Bartolomé, J. Suberviola, C. Gómez-Cordovés, Orac-Fluorescein As a Model for Evaluating Antioxidant Activity of Wines, POLISH J. FOOD Nutr. Sci. Pol. J. Food Nutr. Sci. 1253 (2003) 133–136.
37. A.M. Brownlee, H. Vlassara, A. Kooney, P. Ulrich, A. Cerami, Diabetes-Induced Arterial Aminoguanidine Prevents Cross-imnkng, 232 (2011) 1629–1632.
38. A. Gugliucci, R. Caccavello, K. Kotani, N. Sakane, S. Kimura, Enzymatic assessment of paraoxonase 1 activity on HDL subclasses: A practical zymogram method to assess HDL function, Clin. Chim. Acta. 415 (2013) 162–168. doi:10.1016/j.cca.2012.10.044.
39. J.A. Di Rienzo, F. Casanoves, M.G. Balzarini, L. Gonzalez, M. Tablada, C.W. Robledo, InfoStat, (2011). http://www.infostat.com.ar/.
40. A.A. Ferreira Zielinski, C.W. Isidoro Haminiuk, A. Alberti, A. Nogueira, I.M. Demiate, D. Granato, A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques, Food Res. Int. 60 (2014) 246–254. doi:10.1016/j.foodres.2013.09.010.
41. A. Blainski, G.C. Lopes, J.C.P. De Mello, Application and analysis of the folin ciocalteu method for the determination of the total phenolic content from limonium brasiliense L., Molecules. 18 (2013) 6852–6865. doi:10.3390/molecules18066852.
42. M.A. Gracia Nava, Cuantificación de Fenoles y Flavonoides Totales en Extractos Naturales, Univ. Auton. Querétaro. (2006) 1–4. doi:10.1590/S0102-695X2010000200015.
43. S. Esparza, F., Miranda, R. y Guzmán, Efecto de la temperatura sobre los compuestos fenólicos y la capacidad antioxidante en el residuo de la producción de jugo de mandarina (Citrus reticulata Satsuma), Investig. Y Desarro. En Cienc. Y Tecnol. Aliment. 1 (2016) 843–850.
44. F. Gu, M.K. Jones, J. Chen, J.C. Patterson, A. Catte, W.G. Jerome, L. Li, J.P. Segrest, Structures of discoidal high density lipoproteins: A combined computational-experimental approach, J. Biol. Chem. 285 (2010) 4652–4665. doi:10.1074/jbc.M109.069914.