Solution Phase growth of Tin Oxide (SnO2) Nanostructures under Controlled Synthesis Conditions

Solution Phase growth of Tin Oxide (SnO2) Nanostructures under Controlled Synthesis Conditions

M. A. Khan1,2, Hasan Mahmood*3,4, Bilal Mohuddin1, Tariq Iqbal1, Assad Qayyum1, Ishaq Ahmed5, Waleed Maqbool1

1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
2High-Tech Lab., University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
3Department of Physics, COMSATS Institute of Information Technology, Defense road Lahore, Pakistan;
4Department of Physics, State University of New York at Albany, Albany, NY, 12222 USA;
5National Center for Physics, Quaid-i-Azam University Campus Islamabad, Pakistan

International Journal of nanoparticle research

Tin dioxide (SnO2) nanostructures have been synthesized successfully via solution phase growth technique. Effect of reaction temperature, time and surfactant on morphology, size and bandgap of nanomaterials has been studied. The rods, flowers and spheres like morphologies of SnO2 have been observed using Scanning Electron Microscope (SEM). Structural analysis of synthesized SnO2 has been carried out by X-ray Diffraction (XRD). XRD peaks revealed the tetragonal structure of SnO2 nanocrystals. The increase in grain size was observed with increase in reaction time and reaction temperature of synthesis process. Fourier Transform Infrared spectroscopy (FTIR) has been employed to study the vibrational modes. Optical properties of the SnO2 nanostructures have also been studied by UV-vis spectroscopy. The energy bandgap of the as prepared SnO2 nanocrystals was estimated between 3.76 eV and 4.05 eV. It has been observed that the bandgap of the synthesized SnO2 samples decreased with increase in particle size. This phenomenon can be attributed to the quantum confinement effect at smaller particle size.

Keywords: Crystalline SnO2; Nanorods and Nanoflowers; Bandgap; Quantum Confinement.

Free Full-text PDF

How to cite this article:
M. A. Khan, Hasan Mahmood, Bilal Mohuddin, Tariq Iqbal, Assad Qayyum, Ishaq Ahmed, Waleed Maqbool. Solution Phase growth of Tin Oxide (SnO2) Nanostructures under Controlled Synthesis Conditions. International Journal of Nanoparticle Research, 2017; 1:2.


[1] A. Hyo-Jin, C. Hyun-Chul, P. Kyung-Won, K. Seung-Bin, S. Yung-Eun, J. Phys. Chem. B. 2004;108:9815-9820
[2] Z.W. Pan, Z. R. Dai, Z. L. Wang, Science. 2001;291:1947
[3] A. P. Alivisatos, Science. 1996;271:933
[4] K. Nagase, Y. Zheng, Y. Kodama and J. Kakuta, Journal of Catalysis. 1999;187:123-130
[5] M. Yin, C. K. Wu, Y. Lou, C. Burda, J. T. Koberstein and Y. Zhu, Journal of American Chemical Society. 2005;127:9506-9511
[6] V. Zhang, J. Liu, Q. Peng, X. Wang and Y. Li, Chemistry of Materials. 2006;18:867-871
[7] H. Wu, D. Lin and W. Pan, Applied Physics Letters. 2006;89:1-3
[8] L. L. D. Flores, R. R. Bon, A. M. Galvan, E. Prokhorov and J. G. Hernandez, Journal of Physics and Chemistry of Solids. 2003;64:1037–1042
[9] O. Lupana, L. Chowa, G. Chaic, A. Schultea, S. Parka and H. Heinricha, Materials Science and Engineering B. 2009;157:101–104
[10] A. I. Ahmed, S.A. El-Hakam, A.S. Khder and W.S. Abo El-Yazeed, Journal of Molecular Catalysis A: Chemical. 2013;366:99–108
[11] N. S. Fallah and M. Mokhtary, Journal of Taibah University for Science. 2015;9:531–537
[12] Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, Science. 1997;276:1395
[13] S. A. Pianaro, P. R. Bueno, E. Longo, J.A. Varela, J. Mater. Sci. Lett. 1995;14:692
[14] K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films. 1983;102:1
[15] R. Rella, A. Serra, P. Siciliano, L. Vasanelli, G. De, A.Licciulli, A. Quirini, Sensors Actuators B. 1997;44:462
[16] R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A.Licciulli, Sensors Actuators B. 1999;58:283
[17] M. A. Khan, H. Mahmood, R. N. Ahmed, A. A. Khan, Mahboobullah, Tariq Iqbal, A. Ishaque and R. Mofeed, Journal of Nano Research. 2016;40:1-7
[18] O. Lupan, L. Chow, G. Chai, B. Roldan, A. Naitabdi, A. Schulte, Mater. Sci. Eng. B. 2007;145:57
[19] D. Calestani, M. Zha, A. Zappettini, L. Lazzarini, G. Salviati, L. Zanotti, G. Sberveglieri, Mater. Sci. Eng. C. 2005;25:625
[20] G. Cheng, K.Wu, P. Zhao, Y. Cheng, X. He, K. Huang, J. Cryst. Growth. 2007;309:53
[21] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie, Solid State Commun. 2004;130:89
[22] Z. Q. Liu, D. H. Zhang, S. Han, C. Li, T. Tang, W. Jin, X. L. Liu, B. Lei, C. W. Zhou, Adv. Mater. 2003;15:1754
[23] M. Li, Q. Lu, Y. Nuli, X. Qian, Electrochem. Solid-State Lett. 2007;10:33–37
[24] W. D. Callister, D. G. Rethwisch, Fundamentals of Materials Science and Engineering, John Wiley & Sons, 3rd edition, 2007
[25] L. Tan, L. Wang and Y. Wang. Jour. Nanoma. 2011;7:1-10
[26] S.Y. Venyaminov and F. G. Prendergast; Anal. Biochem. 1997;248:234-245
[27] D. N. Srivastava, S. Chappel, O. Palchik, A. Zaban and A. Gedanken. 2002;18:4160-4164
[28] M. Jean Standard, Chemistry, Introduction to Molecular Vibrations and Infrared Spectroscopy; 2013
[29] S. Tsunekawa, T. Fukuda, A. Kasuya; Journal of Applied Physics. 2000;87:1318-1321
[30] R. S. Rossetti, S. Nakahara and L. E. Brus; J. chem. phys. 1983;79:1086