Hydrophobically-modified Chitosan Microspheres for Release of Diosgenin


Hydrophobically-modified Chitosan Microspheres for Release of Diosgenin


Javier Perez Quinones1,*, Oliver Brüggemann1, Carlos Peniche Covas2

1,* Johannes Kepler University Linz, Institute of Polymer Chemistry, Altenberger Straße 69, 4040 Linz, Austria.
2 University of Havana, Center of Biomaterials, Ave. Universidad s/n entre G y Ronda, Vedado, 10400 La Habana, Cuba.


International Journal of nanoparticle research

Chitosan microspheres (CS) prepared by water-in-oil emulsion/glutaraldehyde cross-linking-evaporation and simple coacervation/cross-linking with sodium tripolyphosphate were covalently linked to diosgenin hemiesters. The diosgenin content found using elemental analysis was ca. 6 to 42 wt-% and it showed dependence on the type of diosgenin hemiesters and on the method of preparation of the CS microspheres. Fourier transform infrared spectroscopy confirmed the hydrophobic functionalization of CS with the diosgenin hemiesters by amide bond formation. The effect of CS modification with diosgenin on the thermal properties was also studied using differential scanning calorimetry. Microsphere sizes determined using optical microscopy ranged from 60 to 700 um, while scanning electron microscopy depicted morphology dependent on the selected method to obtain CS microspheres. In vitro release studies performed in aqueous medium indicated a drug release dependence on the diosgenin hemiester linkers, the steroid content and the acidity of the solution. Sustained diosgenin release in acidic aqueous solution (pH 6.0) reached from 34 to 81% after 48 h.


Keywords:  chitosan microspheres; diosgenin; controlled release

Free Full-text PDF


How to cite this article:
Javier Perez Quinones, Oliver Brüggemann, Carlos Peniche Covas. Hydrophobically-modified chitosan microspheres for release of diosgenin. International Journal of Nanoparticle Research, 2018; 2:3. DOI:10.28933/ijnr-2017-12-1201


References:

1. Sudheesh K. Shukla, Ajay K. Mishra, Omotayo A. Arotiba, Bhekie B. Mamba. Chitosan-based nanomaterials: A state-of-the-art review. International Journal of Biological Macromolecules, 2013; 59: 46–58. Doi: 10.1016/j.ijbiomac.2013.04.043
2. Kamal Dua, Mary Bebawy, Rajendra Awashti, Rakesh K. Tekade, Muktika Tekade, Gaurav Gupta, Terezinha De Jesus Andreoli Pinto, Philip M. Hansbro. Chitosan and Its Derivatives in Nanocarrier Based Pulmonary Drug Delivery Systems. Pharmaceutical Nanotechnology, 2017; 5.
Doi: 10.2174/2211738505666170808095258
3. Prem L. Kashyap, Xu Xiang, Patricia Heiden. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 2015; 77: 36–51. Doi: 10.1016/j.ijbiomac.2015.02.039
4. Julakha A. Mukta, Mosaddiqur Rahman, Abdullah A. Sabir, Dipali R. Gupta, Musrat Z. Surovy, Mahzufur Rahman, M. Tofazzal Islam. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatalysis and Agricultural Biotechnology, 2017; 11: 9–18. Doi: 10.1016/j.bcab.2017.05.005
5. Massimo Malerba, Rafaella Cerana. Chitosan Effects on Plant Systems. International Journal of Molecular Sciences, 2016; 17(7): 996–1011. Doi: 10.3390/ijms17070996
6. Shanshan Jiang, Jiajun Fan, Qian Wang, Dianwen Ju, Meiqing Feng, Jiyang Li, Zhong-bin Guan, Duopeng An, Xin Wang, Li Ye. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine, 2016, 23(3): 243–252. Doi: 10.1016/j.phymed.2016.01.010
7. David Sadava, Susan E. Kane. The effect of brassinolide, a plant steroid hormone, on drug resistant small-cell lung carcinoma cells. Biochemical and Biophysical Research Communications, 2017; 493(1): 783–787. Doi: 10.1016/j.bbrc.2017.08.094
8. Gabriel F. Gola, Andrea C. Bruttomesso, Andre A. Barquero, Javier A. Ramírez. The New Role of Steroids in Viral Infections. Frontiers in Clinical Drug Research – Anti-Infectives, 2017; 4: 93–141. Doi: 10.2174/97816810836981170301
9. Jiao Tang, Zhifu Han, Jijie Chai. Q&A: what are brassinosteroids and how do they act in plants. BMC Biology, 2016; 14: 113–118. Doi: 10.1186/s12915-016-0340-8
10. Yanelis C. Serrano, Ramiro R. Fernández, Franklin R. Pineda, Lilita T. S. Pelegrín, Dagoberto G. Fernández, María C. G. Cepero. Synergistic Effect of Low Doses of X-rays and Biobras-16 on Yield and Its Components in Tomato (Solanum lycopersicum L.) Plants. American Journal of Bioscience and Bioengineering, 2015; 3: 197–202. Doi: 10.11648/j.bio.20150306.18
11. Laura Orzali, Beatrice Corsi, Cinzia Forni, Luca Riccioni. Chitosan in Agriculture: A New Challenge for Managing Plant Disease, Biological Activities and Application of marine Polysaccharides, Dr. Emad Shalaby (Ed.), InTech, Doi: 10.5772/66840
12. Didik P. Restanto, Boedi Santoso, Budi Kriswanto, Sigit Supardjono. The Application of Chitosan for Protocorm Like Bodies (PLB) Induction on Orchid (Dendrobium sp) In Vitro. Agriculture and Agricultural Science Procedia, 2016; 9: 462–468. Doi: 10.1016/j.aaspro.2016.02.164
13. Ariel M. García, Ricardo Martínez. Microwave Assisted Synthesis of Diosgenin Esters of Maleic and Itaconic Acids. Synthetic Communications, 2008; 38(12): 1917–1925. Doi: 10.1080/00397910801997520
14. Javier P. Quiñones, Yamilet C. García, Harold Curiel, Carlos Peniche Covas. Microspheres of chitosan for controlled delivery of brassinosteroids with biological activity as agrochemicals. Carbohydrate Polymers, 2010; 80(3): 915–921. Doi: 10.1016/j.carbpol.2010.01.006
15. K. Szczubialka, K. Zomerska, A. Karewicz, M. Nowakowska. Novel drug carrier – Chitosan gel microspheres with covalently attached nicotinic acid. Journal of Controlled Release, 2006; 116(2): e13–e15. Doi: 10.1016/j.jconrel.2006.09.025
16. Ajit P. Rokhade, Namdev B. Shelke, Sangamesh A. Patil, Tejraj M. Aminabhavi. Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydrate Polymers, 2007; 69(4): 678–687. Doi: 10.1016/j.carbpol.2007.02.008
17. Ming-Tsung Yen, Joan-Hwa Yang, Jeng-Leun Mau. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers, 2009; 75(1): 15–21. Doi: 10.1016/j.carbpol.2008.06.006
18. Peng-Zhi Hong, Si-Dong Li, Chun-Yan Ou, Cheng-Peng Li, Lei Yang, Chao-Hua Zhang. Thermogravimetric analysis of chitosan. Applied Polymer Science, 2007; 105(2): 547–551. Doi: 10.1002/app.25920