Processing and Characterization of Vacuum-Free CuInSe2 Thin Films from Nanoparticle-Precursors using Novel Temperature Treatment Techniques


Processing and Characterization of Vacuum-Free CuInSe2 Thin Films from Nanoparticle-Precursors using Novel Temperature Treatment Techniques


Matthias Schuster*, Philipp Sisterhenn, Lorenz Graf, Peter J. Wellmann

Materials Department 6 (i-MEET), Martensstr. 7, 91058 Erlangen, Germany, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)


International Journal of nanoparticle research

The objective of this work is the processing and characterization of a dense CuInSe2 solar-cell-absorber-layer based on nanoparticulate precursors. Bimetallic copper-indium- and elemental selenium-nanoparticles were synthesized by wet-chemical processes and then dispersed in organic solvents as nano-inks. These inks were then printed into different layer-stacks on a molybdenum coated float-glass-substrate via doctor-blading. The temperature treatment to transform these layer-stacks into dense CISe thin films was investigated, using a face-to-face technique and mechanically applied pressure or the repetition of coating and annealing. All absorber layers were characterized with SEM, EDX and XRD. Dense, coarse grained CuInSe2 layers with a thickness ≈ 7 µm were formed and the application of mechanical pressure shows potential to reduce thickness and sinter together the nanoparticles to large grains of ca. 3 µm in size. The face-to-face-annealing ensured keeping a stoichiometric ratio of (Cu+In) / Se ≈ 1, and can help reducing the content of oxides, even when the annealing is performed in ambient atmosphere. With a repetition of coating and annealing, dense CISe layers could be produced at low temperature of only 350 °C.


Keywords:  CuInSe2, solar cell absorber, nanoparticles, vacuum-free, face-to-face annealing, uniaxial pressure

Free Full-text PDF


How to cite this article:
Matthias Schuster*, Philipp Sisterhenn, Lorenz Graf, Peter J. Wellmann. Processing and Characterization of Vacuum-Free CuInSe2 Thin Films From Nanoparticle-Precursors Using Novel Temperature Treatment Techniques. International Journal of Nanoparticle Research, 2018; 2:4. DOI:10.28933/ijnr-2017-12-1501


References:

[1] P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M. Friedlmeier, et al., Properties of Cu(In,Ga)Se 2 solar cells with new record efficiencies up to 21.7%, Phys. Status Solidi – Rapid Res. Lett. 9 (2015) 28–31. doi:10.1002/pssr.201409520.
[2] I. Repins, M.A. Contreras, B. Egaas, C. Dehart, J. Scharf, C.L. Perkins, 19.9% -efficient ZnO / CdS / CuInGaSe 2 Solar Cell with 81.2 % Fill Factor, Prog. Photovoltaics Res. Appl. 16 (2008) 235–239. doi:10.1002/pip.
[3] F.O. Adurodija, M.J. Carter, R. Hill, Synthesis and characterization of CuInSe 2 thin films from Cu , In and Se stacked layers using a closed graphite box, Sol. Energy Mater. Sol. Cells. 40 (1996) 359–369.
[4] S.M.F. Hasan, M.A. Subhan, K.M. Mannan, The optical and electrical properties of copper indium di-selenide thin films, Opt. Mater. (Amst). 14 (2000) 329–336.
[5] G. Chen, L. Wang, X. Sheng, H. Liu, X. Pi, D. Yang, Chemical synthesis of Cu(In) metal inks to prepare CuInS2 thin films and solar cells, J. Alloys Compd. 507 (2010) 317–321. doi:10.1016/j.jallcom.2010.07.190.
[6] J. Chang, J.H. Lee, J.H. Cha, D.Y. Jung, G. Choi, G. Kim, Bimetallic nanoparticles of copper and indium by borohydride reduction, Thin Solid Films. 519 (2011) 2176–2180. doi:10.1016/j.tsf.2010.11.038.
[7] A.R. Ingole, S.R. Thakare, N.T. Khati, A. V. Wankhade, D.K. Burghate, Green synthesis of selenium nanoparticles under ambient condition, Chalcogenide Lett. 7 (2010) 485–489.
[8] A.L. Stroyuk, A.E. Raevskaya, S.Y. Kuchmiy, V.M. Dzhagan, D.R.T. Zahn, S. Schulze, Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate, Colloids Surfaces A Physicochem. Eng. Asp. 320 (2008) 169–174. doi:10.1016/j.colsurfa.2008.01.055.
[9] W. Zhang, X. Zhang, L. Zhang, J. Wu, Z. Hui, Y. Cheng, et al., A redox reaction to synthesize nanocrystalline Cu2-xSe in aqueous solution., Inorg. Chem. 39 (2000) 1838–9. http://www.ncbi.nlm.nih.gov/pubmed/11428101.
[10] Y. Min, G.D. Moon, J. Park, M. Park, U. Jeong, Surfactant-free CuInSe₂ nanocrystals transformed from In₂Se₃ nanoparticles and their application for a flexible UV photodetector., Nanotechnology. 22 (2011) 465604. doi:10.1088/0957-4484/22/46/465604.
[11] S.A. Möckel, T. Wernicke, M. Arzig, P. Köder, M. Brandl, M. Distaso, et al., Low Temperature Formation of CuInSe 2 Solar Cell Absorbers by an All Printed Two Species Nanoparticulate Se + Cu – In Precursor, Thin Solid Films. 582 (2015) 60–68.
[12] M. Schuster, M. Distaso, S.A. Möckel, U. Künecke, W. Peukert, P.J. Wellmann, Synthesis of In2Se3 and Cu2-xSe Micro- and Nanoparticles with Microwave-Assisted Solvothermal and Aqueous Redox Reactions for the Preparation and Stabilization of Printable Precursors for a CuInSe2 Solar Cell Absorber Layer, Energy Procedia. 84 (2015) 62–70. doi:10.1016/j.egypro.2015.12.296.
[13] M. Schuster, S.A. Möckel, R.A. Wibowo, R. Hock, P.J. Wellmann, Optimising The Parameters For The Synthesis Of CuIn-Nanoparticles By Chemical Reduction Method For Chalcopyrite Thin Film Precursors, MRS Proc. 1538 (2013) 203–208. doi:10.1557/opl.2013.980.
[14] D. Wolf, G. Müller, Kinetics of CIS-formation studied in situ by thin film calorimetry, Thin Solid Films. 362 (2000) 155–160.