Deciphering the longevity of the mole-rats


Deciphering the longevity of the mole-rats


L. Triana1, G. Cocho2, R. Mansilla3 and J.M. Nieto-Villar4*

1Complete Pharmaceutics, Florida, United States of America
2Instituto de Física de la UNAM, México
3Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, UNAM, México.
4Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chair, Faculty of Chemistry, University of Havana, Cuba.


international journal of aging research

A theoretical model of a nonlinear network that outlines the general aspects of mole-rat resistance to age-related diseases, such as cancer and the action of ROS was elaborated. According to our conjecture, it was shown that the protection is established because hyaluronic acid of high molecular mass forms a non-linear network of interactions. That network leads to self-organization away from the thermodynamical equilibrium, which appears through a “first order” phase transition as a supercritical bifurcation of Andronov-Hopf type. Finally, it is shown how the rate of entropy production is a Lyapunov function of the dynamics of the process.


Keywords: mole-rat, hyaluronic acid, ROS, Biological phase transition,Entropy production rate as a Lyapunov function


Free Full-text PDF


How to cite this article:
L. Triana, G. Cocho, R. Mansilla and J.M. Nieto-Villar. Deciphering the longevity of the mole-rats. International Journal of Aging Research, 2018, 1:13. DOI:10.28933/ijoar-2018-07-3101


References:

1. Ruby, J. G., Smith, M., & Buffenstein, R. (2018). Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. ELife, 7, e31157.
2. “Breakthrough of the year 2013. Notable developments.”. Science 342 (6165): 1435–1441.
3. De, A., & Ghosh, C. (2017). Basics of aging theories and disease related aging-an overview. PharmaTutor, 5(2), 16-23.
4. Mitchell, T. W., Buffenstein, R., & Hulbert, A. J. (2007). Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): a comparative study using shotgun lipidomics. Experimental gerontology, 42(11), 1053-1062.
5. Delaney, M. A., Nagy, L., Kinsel, M. J., & Treuting, P. M. (2013). Spontaneous Histologic Lesions of the Adult Naked Mole Rat (Heterocephalus glaber) A Retrospective Survey of Lesions in a Zoo Population. Veterinary pathology, 50(4), 607-621.
6. Edrey, Y. H., Hanes, M., Pinto, M., Mele, J., & Buffenstein, R. (2011). Successful aging and sustained good health in the naked mole rat: a long-lived mammalian model for biogerontology and biomedical research. Ilar Journal, 52(1), 41-53.
7. Lewis, K. N., Mele, J., Hornsby, P. J., & Buffenstein, R. (2012). Stress resistance in the naked mole-rat: the bare essentials–a mini-review. Gerontology, 58(5), 453-462.
8. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. cell, 144(5), 646-674.
9. Jin, K. (2010). Modern biological theories of aging. Aging and disease, 1(2), 72.
10. Tian, X., Azpurua, J., Hine, C., Vaidya, A., Myakishev-Rempel, M., Ablaeva, J., … & Seluanov, A. (2013). High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat. Nature, 499(7458), 346.
11. Schmidt, H., Malik, A., Bicker, A., Poetzsch, G., Avivi, A., Shams, I., & Hankeln, T. (2017). Hypoxia tolerance, longevity and cancer-resistance in the mole rat Spalax–a liver transcriptomics approach. Scientific reports, 7(1), 14348.
12. Park, T. J., Reznick, J., Peterson, B. L., Blass, G., Omerbašić, D., Bennett, N. C., … & Applegate, D. T. (2017). Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat. Science, 356(6335), 307-311.
13. Clanton, T. L. (2007). Hypoxia-induced reactive oxygen species formation in skeletal muscle. Journal of Applied Physiology, 102(6), 2379-2388.
14. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature reviews cancer, 3(10), 721.
15. Ågren, U. M., Tammi, R. H., & Tammi, M. I. (1997). Reactive oxygen species contribute to epidermal hyaluronan catabolism in human skin organ culture. Free Radical Biology and Medicine, 23(7), 996-1001.
16. Zhang, C., Cao, S., Toole, B. P., & Xu, Y. (2015). Cancer may be a pathway to cell survival under persistent hypoxia and elevated ROS: A model for solid‐cancer initiation and early development. International journal of cancer, 136(9), 2001-2011.
17. Lewis, K. N., Mele, J., Hornsby, P. J., & Buffenstein, R. (2012). Stress resistance in the naked mole-rat: the bare essentials–a mini-review. Gerontology, 58(5), 453-462.
18. Buffenstein R. (2008). “Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species”. J Comp Physiol B. 178 (4): 439–45.
19. Csiszar, A., Labinskyy, N., Orosz, Z., Xiangmin, Z., Buffenstein, R., & Ungvari, Z. (2007). Vascular aging in the longest-living rodent, the naked mole rat. American Journal of Physiology-Heart and Circulatory Physiology, 293(2), H919-H927.
20. Nishikawa, M. (2008). Reactive oxygen species in tumor metastasis. Cancer letters, 266(1), 53-59.
21. Magi, S., Iwamoto, K., & Okada-Hatakeyama, M. (2017). Current status of mathematical modeling of cancer–From the viewpoint of cancer hallmarks. Current Opinion in Systems Biology, 2, 39-48.
22. Simeoni, C., Dinicola, S., Cucina, A., Mascia, C., & Bizzarri, M. (2018). Systems Biology Approach and Mathematical Modeling for Analyzing Phase-Space Switch During Epithelial-Mesenchymal Transition. In Systems Biology (pp. 95-123). Humana Press, New York, NY.
23. Andronov, A., Vitt, A., & Khaikin, S. (1966). Theory of oscillations, Pergamon Press.
24. Anishchenko, V. S., Astakhov, V., Vadivasova, T., Neiman, A., & Schimansky-Geier, L. (2007). Dynamical Chaos. In Nonlinear Dynamics of Chaotic and Stochastic Systems (pp. 109-306). Springer, Berlin, Heidelberg.
25. Kuznetsov, Y. A. (2013). Elements of applied bifurcation theory (Vol. 112). Springer Science & Business Media.
26. Goldbeter, A. (1997). Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour. Cambridge university press.
27. Kitano, H. (2007). Towards a theory of biological robustness. Molecular systems biology, 3(1), 137.
28. Prigogine, I. (1967). Introduction to thermodynamics of irreversible processes. New York: Interscience, 3rd ed.
29. Donder, T., & Van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity. Stanford University Press.
30. Betancourt-Mar, J. A., Rodríguez-Ricard, M., Mansilla, R., Cocho, G., & Nieto-Villar, J. M. (2016). Entropy production: evolution criteria, robustness and fractal dimension. Revista mexicana de física, 62(2), 164-167.
31. Nieto-Villar, J. M., Quintana, R., & Rieumont, J. (2003). Entropy production rate as a Lyapunov function in chemical systems: Proof. Physica Scripta, 68(3), 163.
32. Izquierdo-Kulich, E., Rebelo, I., Tejera, E., & Nieto-Villar, J. M. (2013). Phase transition in tumor growth: I avascular development. Physica A: Statistical Mechanics and its Applications, 392(24), 6616-6623.
33. Llanos-Pérez, J. A., Betancourt-Mar, A., De Miguel, M. P., Izquierdo-Kulich, E., Royuela-García, M., Tejera, E., & Nieto-Villar, J. M. (2015). Phase transitions in tumor growth: II prostate cancer cell lines. Physica A: Statistical Mechanics and its Applications, 426, 88-92.
34. Llanos-Pérez, J. A., Betancourt-Mar, J. A., Cocho, G., Mansilla, R., & Nieto-Villar, J. M. (2016). Phase transitions in tumor growth: III vascular and metastasis behavior. Physica A: Statistical Mechanics and its Applications, 462, 560-568.
35. Betancourt-Mar, J. A., Llanos-Pérez, J. A., Cocho, G., Mansilla, R., Martin, R. R., Montero, S., & Nieto-Villar, J. M. (2017). Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells. Physica A: Statistical Mechanics and its Applications, 473, 344-351.
36. Martin, R. R., Montero, S., Silva, E., Bizzarri, M., Cocho, G., Mansilla, R., & Nieto-Villar, J. M. (2017). Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?. Physica A: Statistical Mechanics and its Applications, 486, 762-771.
37. Guerra, A., Rodriguez, D. J., Montero, S., Betancourt-Mar, J. A., Martin, R. R., Silva, E., … & Nieto-Villar, J. M. (2018). Phase transitions in tumor growth VI: Epithelial–Mesenchymal transition. Physica A: Statistical Mechanics and its Applications, 499, 208-215.