Bacteriological study on staphylococcal bovine clinical mastitis with reference to methicillin-resistant Staph. aureus (MRSA)


Bacteriological study on staphylococcal bovine clinical mastitis with reference to methicillin-resistant Staph. aureus (MRSA)


Sayed, S. M.

Egypt- Animal Health Research Institute (Assiut Regional Lab., Bacteriology Dept.)

American Journal of Microbiology and Immunology


This descriptive study was done on 101 milk samples obtained from clinically mastitic dairy cows in Assiut Governorate, Egypt. Staphylococcus aureus (S. aureus) was the main causative agent of clinical mastitis (34.65%) followed by S. saprophyticus (10.89%), S. intermedius and S. epidermidis (8.91%, for each). The other causative agents (non Staph. Spp.) were identified. Sensitivity test of S. aureus isolates was performed against 11 antimicrobial agents, where found that 21 S. aureus strains (60%) were methicillin resistant S. aureus (MRSA). Ten MRSA strains were subjected for: I- slime-producing factor on Congo Red Agar (CRA) plates phenotypically, as 6 isolates (60%) were positive for slime production. II- PCR which was optimized targeting mecA, icaA and icaD genes, where 5 isolates (50%) were positive for mecA gene. Six isolates (60%) and 8 isolates (80%) were positive for icaA and icaD genes, respectively. Five strains (50%) were positive for both icaA and icaD genes. Also 3 strains (30%) were positive for all mecA, icaA and icaD genes. Conclusion, it was concluded that bovine staphylococcal mastitis was the most predominant issue where S. aureus was the main cause. Detection of mecA gene in S. aureus isolates indicating that several cases suffering from S. aureus mastitis have an MRSA problem. Genotypic determination of mecA gene proved the most reliable method for detection of methicillin-resistant S. aureus. The present work paid an attention to the 3 MRSA strains (30%) were positive to all tested genes rather than slime production as the worst isolated strains all over this study (multidrug resistant, slime producing as well as carrying mecA, icaA and icaD genes). In vitro Enrofloxacin, Gentamicin and Doxycycline the most effective drugs for Staph. spp. clinical mastitis and should be recommended for treatment of such cases of bovine mastitis.   


Keywords: Cows, clinical mastitis, methicillin-resistant Staphylococcus aureus, mecA, icaA, icaD, slime factor.

Free Full-text PDF


How to cite this article:
Sayed, S.M.. Bacteriological study on staphylococcal bovine clinical mastitis with reference to methicillin-resistant Staph. aureus (MRSA). American Journal of Microbiology and Immunology, 2016,1:1. DOI: 10.28933/sayed-ajmi-07-2016


References:
1. Moon, J. S.; Lee, A. R.; Kang, H. M. et al. Phenotypic and genetic antibiogram of methicillin-resistant staphylococci isolated from bovine mastitis in Korea. J. Dairy Sci., 2007; 90: 1176–1185.
2. Nam, H. M.; Lee, A. R.; Jung, S. C. et al. Antimicrobial susceptibility of Staphylo-coccus aureus and characterization of methicillin-resistant Staphylococcus aureus isolated from bovine mastitis in Korea. Foodborne Pathog. Dis., 2011; 8: 231–238.
3. Lim, S. K.; Nam, H. M.; Jang, G. C. et al. Transmission and Persistence of Methicil-lin-Resistant Staphylococcus aureus in Milk, Environment, and Workers in Dairy Cattle Farms. Foodborne Pathogens and Diseases, 2013; Vol. 10, No., 8:731-736.
4. Ciftci, A; Findik, A; Onuk, E. E. and Savasan, S. Detection of methicillin resistance and slime factor production of Staphylococcus aureus in bovine mastitis. Brazilian J. of Microbiology, 40:254-261.
5. Tavakol, M.; Richard, G. M.; Otlis, C. S. et al. Bovine-associated MRSA ST398 in the Netherland. Acta Veterinaria Scandinavica, 2012; 54:28.
6. Ahmady, M. and Kazemi, S. Detection of the enterotoxigenic genes (sei, sej) in Staphylococcus aureus isolates from bovine mastitis milk in the West Azerbaijan of Iran. Comp. Clin. Path., 2013; 22(4):649-654.
7. Kateete, D. P.; Kabugo, U.; Baluku, H. et al. Prevalence and antimicrobial suscep-tibility patterns of bacteria from milkmen and cows with clinical mastitis in and around Kampala, Uganda. PLoS One, 2013; Volume 8, Issue 5, e63413.
8. Chambers, H. F. Methicillin resistance in staphylococci: Molecular and Biochemi-cal Basis and Clinical Implications. Clin. Microbiol. Rev., 1997; 10: 781-791.
9. Hiramatsu, K.; Katayama, Y.; Yuzawa, H. and Ito, T. Molecular genetics of methicil-lin resistant Staphylococcus aureus. Int. J. Med. Microbiol., 2002; 292: 67-74.
10. Vasudevan, P.; Nair, M. K. M.; Annamalai, T.; et al. Phenotypic and genotyping characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet. Microbiol., 2003; 92: 179-185.
11. Amorena, B.; Gracia, E.; Monzon, M. et al. Antibiotic susceptibility assay for Staph-ylococcus aureus in biofilms developed in vitro. J. Antimicrob. Chemother., 1999; 44: 43-55.
12. Yazdani, R.; Oshaghi, M.; Havayi, A.; et al. Detection of icaAD gene and biofilm formation in Staphylococcus aureus isolates from wound infections. Iranian J. Publ. Health, 2006; 35 (2), 25-28.
13. Quinn, P. J.; Carter, M. E.; Markey, B. et al. Clinical veterinary microbiology. 6th ed., 2004; Mosby, Edinburgh, London, New York, Philadelphia, St. Louis, Sydney, To-ronto.
14. NCCLS (2000): Performance Standards for Antimicrobial Disk Susceptibility Test. Approved Standard M2 – A7, M100 – S10. PA: National Committee for Laboratory Standards, 2000.
15. McClure, J-A.; Conly, J. M.; Lau, V. et al. Novel multiplex PCR assay for detection of the staphylococcal virulence marker Panton-Valentine leukocidin genes and simultaneous discrimination of methicillin-susceptible from -resistant staphylococ-ci. J. Clin. Microbiol., 2006; 44(3): 1141-1144.
16. Abd-Elrahman, A. H. Mastitis in housed dairy buffaloes: incidence, etiology, clini-cal finding, antimicrobial sensitivity and different medical treatment against E. coli mastitis. Life Science J. 2013; 10(1): 532 – 538.
17. Reddy, P.; Qi, C.; Zembower, T. et al. Postpartum mastitis and community-acquired methicillin-resistant Staphylococcus aureus. Emerg. Infect. Dis., 2007; 13 (2): 298-301.
18. Ali, L.; Muhammed, G.; Arshad, M. et al. Bacteriology of mastitis buffaloes in Tehsil Samundri of district Faisalabad. Pakistan Vet. J., 2008; 28 (1); 31-33.
19. Haftu, R.; Taddele, H. and Gugsa, G. Prevalence, bacterial causes, and antimicro-bial susceptibility profile of mastitis isolates from cows in large-scale dairy farms of Northern Ethiopia. Trop. Anim. Health Prod., 2012; 44: 1765 – 1771.
20. Abou-Zaid, A. and El-Sawalhy, A.): Some studies on mastitis in cattle. Alex. J. Vet., 1999; 15(1):23-34.
21. Eman, A. Ahmed; EL. Sangary, F. H. and Abou Zead, A. A. Bacterial and biochem-ical studies on mastitis of cattle in Sharkia Governorate. Assiut Vet. Med. J., 2006; 52(109): 207-214.
22. Moniri, R.; Dastehgoli, K. and Akramian, A. Increasing resistant coagulase nega-tive Staphylococci in bovine clinical mastitis. Pakistan J. of Biological Sciences, 2007; 10(15): 2465-2469.
23. Sayed, Z. M. and Mohamed, A. E. A. Bacteriological studies on mastitis in dairy Friesian cattle in Quena Governorate. Beni-Suef, Vet. Med. J., 2008; 18(2): 19-21.
24. Bradley, A. J. Bovine mastitis an evolving disease. The Veterinary J., 2002; 164: 116-128.
25. Calvinho, L. F.; Toselli, F. G.; Weimann, W.R. et al. Antimicrobial Sensitivity of co-agulase-positive staphylococcal strains isolated from bovine mastitis in the central dairy catchment area of Argentina. Rev. Argent. Microbiol., 2002; 34: 171-175.
26. Gianneechini, R. E.; Concha, C. and Franklin, A. Antimicrobial susceptibility of udder pathogens isolated from dairy herds in the West Littoral region of Uruguay. Acta Vet. Scand., 2002; 43: 31-41.
27. Arshad, M.; Muhammad, G.; Siddique, M.; et al. Staphylococcal mastitis in bovine and some properties of Staphylococcal isolates. Pakistan. Vet. J., 2006; 26 (1); 20-22.
28. Vanderhaeghen, W.; Cerpentier, T.; Adriaensen, C.; et al. Methicillin-Resistant Staphylococcus aureus (MRSA) ST398 Associated with Clinical and Subclinical Mastitis in Belgian Cows. Vet. Microbiology, 2010; 144:166-171.
29. Deurenberg, R. H.; Vink, C.; Kalenic, S. et al. The molecular evolution of methicil-lin-resistant Staphylococcus aureus. Clin Microbiol Infect., 2007; 2009; 13: 222–235.
30. Sancak, B. S. aureus’ta metisilin direnç mekanizmalari. Mikrobiyol. Bult., 2000;34: 381-389.
31. Eftekhar, F. and Dadaei, T. Biofilm formation and detection of icaAB genes in clin-ical isolates of Methicillin resistant Staphylococcus aureus. Iranian Journal of Basic Medical Sciences, 2011; 14( 2): 132-136.
32. Knobloch, J. K. M.; Horstkotte, M. A.; Rohde, H. Evaluation of different detection methods of biofilm formation in Staph. aureus. Med. Microbiol. Immunol., 2002; 191 (2): 101- 106.
33. Fitzpatrick, F.; Humphreys, H. and O’Gara, J.P. The genetics of staphylococcal bio-film formation—will a greater understanding of pathogenesis lead to better man-agement of device-related infection? Clin. Microbiol. Infect., 2005; 11, 967-973.
34. Arciola, C. R.; Baldassarri, L. and Montanaro, L. Presence of icaA and icaD genes and slime production in a collection of staphylococcal strains from catheter-associated infections. J. Clin. Microbiol., 2001; 39 (6): 2151-2156.
35. Rasha A. Nasr; Hala M. AbuShady and Hussein, S. H. Biofilm formation and presence of icaAD gene in clinical isolates of staphylococci. The Egyptian J. of Med. Human Genetics, 2012; 13:269–274.