Biogenic synthesis of Adhatoda vasica L. Nees mediated silver nanoparticles


Biogenic synthesis of Adhatoda vasica L. Nees  mediated silver nanoparticles and their antibacterial, anticancer activity on Hep-G2 cell lines


 International Journal of Traditional and Complementary MedicineArumugam Sengottaiyan 1,*†, Chinnappan Sudhakar 1†, Kandasamy Selvam 2*, Thangaswamy Selvankumar 1, Muthusamy Govarthanan 1,3, Balakrishnan Senthikumar 2 and Koildhasan Manoharan 4

1 PG & Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal 637501, Tamil Nadu, India. 2 Centre for Biotechnology, Muthayammal College of Arts and Science, Rasipuram, Namakkal 637 408, Tamil Nadu, India 3 Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan 570752, South Korea 4 Raja Duraisingam Government Arts & Science College, Sivagangai.

The first two authors equally contributed this work


The present investigation has been studied with the green synthesis of silver nanoparticles (AgNPs) using medicinally valued Adhatoda vasica -Nees and to evaluate the antibacterial and anticancer activity against HEP-G2 (Human epithelium cells of liver cancer) cell lines. The UV-Vis spectroscopy results show a strong resonance centered on the surface of silver nanoparticles at 420 nm. Fourier transform infrared (FT-IR) spectroscopy study demonstrates A. vasica aqueous extract acted as the reducing and stabilizing agent during the synthesis. The X-ray diffraction (XRD) analysis confirmed that the synthesized AgNPs are single crystalline face-centered cubic in structure, average crystal size 21 nm. Scanning electron microscope–energy dispersive spectroscopy (SEM-EDS) image confirmed synthesis of relatively uniform nanoparticles. The EDS analysis of the nanoparticles dispersion, using a range of 2-4 keV, confirmed the presence of elemental silver, without any contamination. The antibacterial activities were carried out against pathogenic bacteria. The maximum zone of inhibition was observed in the synthesized AgNPs (10µg/mL) against Staphylococcus sp. (16mm), Klebsiella sp. (14.5mm). The cytotoxicity activity as evidence by MTT assay with HEP-G2 cell lines. The synthesized AgNPs are ready for the application in the field of nanomedicine against pathogenic bacteria and very good anticancer drug.


Keywords: Adhatoda vasica, silver nanoparticles, antibacterial, cytotoxicity, HEP-G2 cell lines.

Free Full-text PDF


How to cite this article:
Arumugam Sengottaiyan, Chinnappan Sudhakar, Kandasamy Selvam, Thangaswamy Selvankumar, Muthusamy Govarthanan, Balakrishnan Senthikumar and Koildhasan Manoharan. Biogenic synthesis of Adhatoda vasica L. Nees  mediated silver nanoparticles and their antibacterial, anticancer activity on Hep-G2 cell lines. International Journal of Traditional and Complementary Medicine 2017, 2:14. DOI:10.28933/sengottaiyan-ijtcm-201604-2


References:
1. Ghani, A. Medicinal Plants of Bangladesh, second edition, Asiatic society of Bangladesh: 2003, Dhaka-1000: 69–70.
2. Kumar, V.; Yadav, SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications: J. Chem. Technol. Biotechnol. 2009, 84, 151–157.
3. Stoimenov, PK.; Klinger, RL.; Marchin, GL.; Klabunde, KJ. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002, 18, 6679–6686.
4. Vanaja, M.; Annadurai, G. Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity: Appl Nanosci. 2012, 3, 217–223.
5. Dattu, S.; Vandana, R.; Shivaraj, N.; Jyothi, H.; Ashish, KS.; Jasmine, M. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014, doi: 10.1155/2014/408021.
6. Singh, A.; Jain, D.; Upadhyay, MK.; Khandelwal, N.; Verma, HN. Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities: Dig J Nanomater Biostruct. 2010, 5, 483–489.
7. Sriram, MI.; Kanth, SBM.; Kalishwaralal, K.; Gurunathan, S. Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. Int J Nanomed. 2010, 5, 753¬–762.
8. Lara, HH.; Ayala-Nunez, NV.; Ixtepan-Turrent, L.; Rodriguez- Padilla, C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology. 2010, 8, 1–10.
9. Mondala, N.K.; Chowdhurya, A.; Deya, U.; Mukhopadhyab, P.; Chatterjeeb, S.; Dasa, K.; Dattaa, J.K. Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis. 2014, 4, 204–210.
10. Jiang, H.; Manolache, S.; Wong, A.C.L.; Denes, F.S. Plasma-enhanced deposition of silver nanoparticles onto polymer and metal surface for the generation of antimicrobial characteristics. J. Appl. Polym. Sci. 2004, 93, 1411–1422.
11. Duran, N.; Marcato, PD.; Alves, OL. GIH De Souza; E Esposito. J Nanobiotechnology 2005, 3, 8–14. 12. Hsin, Y.; Chen, C.; Huang, S.; Shih, T.; Lai, P.; Chueh, P. The apoptotic effect of nanosilver is mediated by ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008, 179, 130–139.
13. Hussain, SM.; Hess, KL.; Gearhart, JM.; Geiss, KT.; Schlager, JJ. In-vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In-Vitro. 2005, 19: 975–983.
14. Kim, S.; Choi, JE.; Choi, J. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicology in Vitro. 2009, 23, 1076–1084.
15. Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, DA.; Hoffmann, HJ.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes, Toxicol Lett. 2009, 190, 156–162.
16. Park, EJ.; Yi, J.; Kim, Y.; Choi, K.; Park, K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol in Vitro. 2010, 24, 872–878.
17. Shavandi, Z.; Ghazanfari, T.; Moghaddam, KN. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol. 2011, 33, 135–140.
18. Vinoth Kumar, K.; Udayasoorian, RC. A Biological Approach of Silver (Ag) Nanoparticles Synthesis Using Leaf Extract of Adhatoda Vasica. International Journal of Scientific Research. 2014, 3, 2277–8179.
19. Aruna, A.; R, Nandhini.; V. Karthikeyan,; P, Bose. Synthesis and characterization of silver nanoparticles of insulin plant (Costus pictus D. Don) leaves. Asian J. Biomed. Pharm. Sci. 2014, 4, 1–6.
20. Sudhakar, C.; Selvam, K.; Govarthanan, M.; Senthilkumar, B.; Sengottaiyan, A.; Stalin, M.; Selvankumar, T. Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. J Genet Eng Biotechnol. 2015, 13, 93–99.
21. Aravinthan, A.; Govarthanan, M.; Selvam, K.; Praburaman, L.; Selvankumar, T.; Balamurugan, R.; Kamala-Kannan, S.; Jong-Hoon Kim. Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int. J. Nanomedicine. 2015, 10, 1977–1983.
22. Pal, A.; Shah, S.; Devi, S. Preparation of silver, gold and silver– gold bimetallic nanoparticles in w/o microemulsion containing TritonX-100, colloids and surfaces. Physicochem Eng Aspects. 2007, 302, 483–487.
23. Sadeghi, B.; Jamali, M.; Kia, S.; Amini, NA.; Ghafari, S. Synthesis and characterization of silver nanoparticles for antibacterial activity. Int J Nano Dimens. 2010, 1, 119–124.
24. Amany, A.; El-Rab, SFG. Effect of reducing and protecting agents on size of silver nanoparticles and their anti-bacterial activity. Der Pharma Chemica. 2012, 4, 53–65.
25. Renugadevi, K.; Venus Aswini, R. Microwave irradiation assisted synthesis of silver nanoparticle using Azadirachta indica leaf extract as a reducing agent and invitro evaluation of its antibacterial and anticancer activity. Int J Nanomater Biostruct. 2012, 2, 5–10.
26. McFarland, J. The nephelometer: an instrument for estimating the number of bacteria in suspensions for calculating the opsonic index and vaccines. J Am Med Assoc. 1907, 49, 1176–1178.
27. Sengottaiyan, A.; Mythili, R.; Selvankumar, T.; Aravinthan, A.; Kamala-Kannan, S.; anoharan, K.; Thiyagarajan, P.; Govarthanan, M.; Jong-Hoon Kim. Green synthesis of silver nanoparticles using Solanum indicum L. and their antibacterial, splenocyte cytotoxic potentials. Res. Chem. Intermed. 2016, 42, 3095–3103.
28. Sivakumar, J.; Premkumar, C.; Santhanam, P.; Saraswathi, N. Biosynthesis of silver nanoparticles using Calotropis gigantean leaf. Afr. J. Basic. Appl. Sci. 2011, 3, 265-270.
29. Kalishwaralal, K.; BarathManiKanth, S.; Pandian, SRK.; Deepak, V.; Gurunathan, S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloid Surf. 2010, 79, 340–344.
30. Gurunathan, S.; Raman, J.; Malek, SN.; John, P.; Vikineswary, S. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2014, 8, 4399–4413.
31. Yu, DG. Formation of colloidal silver nanoparticles stabilized by Na?–poly (c-glutamic acid)–silver nitrate complex via chemical reduction process. Colloid Surf. 2007, 59, 171–178
32. Chamakura, K.; Perez-Ballestero, R.; Luo, Z.; Bashir, S. Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloid Surf. 2011, 84, 88–96.
33. Inbathamizh, L.; Mekalai Ponnu, T.; Jancy Mary, E. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J. Pharma Res. 2013, 6, 32–38.