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This paper applied the two times dynamic deterrence model 
(DDM) and relax the assumption of perfect size selectivity in gill-
net in order to specify factors that determine  violation rate. The 
method of comparative statics is employed to derive analytical 
results on the sensitivity of optimal violation to a number of key 
factors of high relevance to compliance with regulation designed 
to protect against over fishing. Analytical results obtained with 
this extended DDM confirm findings of earlier empirical studies. 
The study concludes that in developing country artisanal fish-
eries where probability of detection, enforcement and levels of 
fine are typically low, and poverty levels deriving high impatience 
about the future (discount rate) violation rates are bound to be 
high. The relative magnitude of the effects of each of these fac-
tors on compliance with regulation however, remains an import-
ant empirical question that requires further investigation for prior-
itization of policy actions.
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Introduction 

 Fishery renewable resource have been 

threatening worldwide by the practicing of illegal 

fishing which considered to be a theft from 

national revenues. It is the main driver of global 

over-fishing and marine ecosystem degradation. 

It threats food security and becoming associated 

with drugs, violation and even organized crime 

(AU-IBAR 2016). 

Though it is difficult to estimate illegal and 

unreported fishing losses worldwide, some 

attempts have been done. For instance Agnew 

DJ, Pearce J, Pramod G, Peatman T, Watson R, 

et al. (2009) estimated illegal unreported fish to 

be between $10 bn and $23.5 bn annually, 

representing between 11 and 26 million tons. 

They found that developing countries are most 

vulnerable from illegal fishing, with total 

estimated catches in West Africa being 40% 

higher than reported catches. Pauly and Zeller’s 

(2016) Refers this vulnerability for many reasons 

that are related to quality of governance such as 

corruption, ineffectiveness, rule of law, 

regulatory quality and accountability. 

Illegal fishing drivers are found to be, the higher  

profits, rewards are high and the risks relatively 

low, debt relief, criminal involvement such as 

drugs, exchanging drugs for fish products, and 

poverty fuelled by limited livelihoods (AU-IBAR 

2016) 

Illegal fishing; particularly the practice of fishing 

with small mesh size using gillnets is very 

common in developing countries. “When a fisher 

uses gill net for catch, a fish swims into a net and 

passes only part way through the mesh. When it 

struggles to free itself, the twine slips behind the 

gill cover and prevents escape. Gillnets are so 

effective that their use is closely monitored and 

regulated by fisheries management 

and enforcement agencies. Gillnets have a high 

degree of size selectivity which means legal 

gillnet catches legal sizes while illegal gillnet or 

                                                 
I am very grateful to professor Rashid Hassan and Dr. Albert 

Honlonkou for invaluable comments and revision of the model 

under-sized gillnets catches both legal and 

illegal catch”1. 

Violating mesh size regulation is driven by the 

selfish motive of maximizing private profits out of 

open access fishing waters and difficulties of 

implementing regulations. For example, Akpalu 

(2008 and 2009) and Eggert and Lokina (2009) 

found that the use of small mesh size seriously 

affected the fishery resources in Ghana and 

Tanzania, respectively. In India, where the 

prescribed minimum size is 35 mm, stake nets 

with mesh sizes less than 5 mm were used to 

catch juvenile fish (Srinivasa, 2005). Fishers in 

Sudan use mesh of 2 cm instead of the 

prescribed 4 cm size to catch species used for 

food processing (Hamid, 2000) putting serious 

pressure on the country’s fish resources. 

Many theoretical and empirical studies have 

been conducted to determine the reasons for 

non-compliance to fishery regulation. (Akpalu, 

2008; Charles et al., 1999; Eggert & Lokina, 

2009; Furlong 1991; Hatcher et al., 2000 and 

Sumaila et al., 2006). Sumaila et al., (2006) 

estimate gains from illegal fishing to amount to 

about 24 times the fine paid as a punishment 

compared to the 5 times the penalty estimated 

by King and Sutinen (2010). 

The behaviour of violation of laws was first 

studied by Becker (1968). Many studies used 

Becker’s model of the economics of crime and 

punishment under both static and dynamic 

formulations. Static deterrence models assume 

that violators face a one time period decision 

problem of maximizing expected utility from 

illegal fishing, i.e. choice of either to follow or not 

follow fishery regulation (Charles et al., 1999; 

Furlong, 1991; Hatcher & Gordon, 2005; 

Kuperan & Sutinen, 1998; Sutinen & Kuperan 

1999 and Sumaila et al., 2006). On the other 

hand in dynamic formulations the fisher will be 

optimizing his/her accumulative gains over time 

until he/she gets caught because the crime is 

committed repeatedly (Akpalu, 2008 and Leung, 

1 for more information about gillnets, please refer to gillnet 

Wikipedia 

 

https://en.wikipedia.org/wiki/Enforcement
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1991). In addition the Dynamic Deterrence 

Model (DDM) also considers the change of the 

danger of getting caught over time and 

differences in fishers’ time preference towards 

the future (discount rates) (Akpalu, 2008, Davis 

1988 Lueng, 1991, Abusin and Hassan 2015). 

The aim of this paper is therefore to explain 

mathematically the behaviour of the fisher who 

violate mesh size regulation and specify a DDM 

that relax the assumption of perfect selectivity 

used in previous literature. It also aim to analyse 

determinants of violating mesh size regulation.  

The next section of the paper develops the 

theoretical framework that adapts the DDM to 

explain fisher behaviour. Section three derives 

analytical results under dynamic formulations by 

applying comparative static method. Section 

four concludes with key implications of the 

results. 

Dynamic deterrence with size selectivity 

measure 

This study employed two- periods DDM of 

Akpalu (2008), Davis (1988) and Leung, (1991) 

which postulates that violators seek to maximize 

their expected discounted profit over two 

periods. In the first period, offenders gain from 

illegal activities until the time they get caught and 

pay a fine. Violators will then engage only in 

legal activities thereafter concluding the second 

period choice problem. The repeated nature of 

the crime and differences in fishers’ time 

preference towards the future (discount rates) 

make them consider maximizing the sum of 

stream of net benefits over time using all skills 

and experiences to prolong the time to getting 

caught. 

Assume that m is the frequency of illegal fishing 

measured as the number of sub-periods of 

fishing per unit time considered (i.e. it could be 

number of months/days or years of illegal 

fishing). If in any period the fisher uses a small 

(illegal) mesh size, he targets both mature and 

immature fish (perfect selectivity assumption is 

relaxed) (i.e. m> 0, his profit m from violation is:

 

)(),(.),,,,( cQpmcmsEQmpEQpcm mammammam    (1) 

Where p a  refers to the average composite price 

of fish (mature and immature)2, c is total cost of 

fishing illegally including the fixed (sunk) cost of 

the illegal net, and the variable efforts’ cost per 

period m. Q m  
is the quantity of fish caught using 

an illegal net (i.e. a mix of mature and immature 

fish) per period of violation, which is a function of 

the effort used to catch this quantity per period 

mE  and the stock s of fish  (mature and 

immature) plus the legal catch which will be 

calculated next. 

It is assumed that the time of the entire planning 

horizon is T; then the time of fishing illegally 

extends from t=1… m, where m as defined 

above (number of periods of illegal fishing till 

detection). After being caught at the end of the 

first period and the illegal net being seized, the 

fisher will be left with only one option which is to 

continue to maximise his profit from only legal 

catches thereafter (i.e. from t=m+1 …∞, second 

period of DDM)
3
 earning profit n : 

 

)(),(.),,,,( bQpnbnxEQnpEQbnp nnnnnnnnn        (2) 

                                                 
2 Average price is used because of the fact that the catch from 

illegal nets include both mature and immature catches and  

fishers usually sell their catch of mixed sizes to middlemen in 

weight units (kg) at a reduced price depending on the percentage 

of small fish. 

 
3 Though the planning horizon is infinite in the second period, n 

is used as number of times of legal fishing given the fact that 

non-violators can’t live forever. 

. 
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Where n is the number of times of fishing legally,
 

np  is the price of normal (legal mature size) 

catch, b is total cost that include a fixed (sunk) 

cost of the legal net and the variable efforts’ cost, 

and
 nQ

 
is the quantity of normal catch only in 

periods of no violation specified as a function of 

the effort nE
 
and the stock of only mature fish x 

per time period. 

Here we have two important issues first, the 

assumption of perfect size selectivity that used 

in previous literature is relaxed. Previous 

literature that used DDM assumes perfect 

selectivity (Akpalu 2008); meaning illegal net 

catches only illegal catch while in this study 

illegal net catches mixed catches as explained 

before. The second issue is that most of the 

fishers in developing countries obtained both 

type of gillnets; legal and illegal (King and 

Sutinen 2010; Eggert & Lokina, 2009; Abusin 

and Hassan 2014). Accordingly, the profit of the 

fisher over the first period will be the sum of 

nm  & (profits from both nets). 

 

)),(()),(( bxEQpncsEQpm nnnmmanm                   (3) 

 

Given that the assumptions of the DDM holds, 

the violator lacks knowledge about the exact 

time of detection.  However, he has some 

information about the distribution of the 

detection time (Davis, 1988). Thus, we assume 

a continuous distribution of time of detection t  

with the probability density function (pdf) given 

by )(tg  and the cumulative density function (cdf) 

given by )(tG  so that dttdGtg /)()(  . Then, the 

probability of being caught at time t is )(tG  and 

the probability of not being caught at time t is

)(1 tG .  If the fisher is caught, he pays a fine F, 

which is a fixed amount of money plus the cost 

of the seized net with illegal catch. According to 

Davis (1988), the expected probability of being 

fined is R4 and the expected present value of the 

fine is: 

 

dtetFgR t



0

)(       (4) 

 

The following value function (equation 5) estates 

that the fisherman is maximising his expected 

discounted profit V (.) over an infinite time 

horizon (the two periods) and alternating 

between tow nets in the first period; legal and 

illegal. If the fisher caught, the illegal net will be 

sized and he will be forced to continue fishing 

legally in the second period. 

 




















0

)()((

)(1(
(.)

)),(..

)),(..),(..(
dt

tRFgtG

tGt
eV

bnxEQnp

bnxEQnpcmsEQmp

nnn

nnnmma
   (5) 

 

Where V (.) is the value function,  is the 

discount rate. Equation (5) states that the 

                                                 
4  The use of expected fine is due to considerations such as 

corruption, as some fishers may escape paying a fine even if they 

are caught. 

fisher’s expected discounted net profit is equal 

to the expected discounted profit from illegal 
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fishing (the first and second terms) plus the 

expected discounted profit from legal fishing (the 

third term) minus the expected fine from violation 

(last term). 

The probability of detection is modelled as a 

hazard rate, which is the conditional probability 

of having a spell length of exactly t , conditional 

on survival up to time t  (Jenkins, 2005). 

Following Davis (1988), the probability of 

detection is equated to the hazard rate and set 

to be independent of time. Used in this context, 

the hazard rate is the probability that a law-

breaking fisher be caught at time t, given that he 

escaped the police until time t. This probability is 

given by5: 

)(1

)(
),Pr(

tG

tg
mE




    (6) 

Pr(.) is the probability of detection of a violator 

given that he/she has not been detected before; 

E is the constant enforcement effort of the 

regulator6, m, as defined earlier is the rate of 

violation (e.g. number of months per year that 

the fisher fishes illegally). The survival function 

is (1-G (t)) and E and m are time-invariant. Then, 

we assume that the hazard rate increases with 

m at an increasing rate (i.e. 0
Pr






m
; 0

Pr
2

2


m


). 

This assumption of a convex relationship 

between probability of detection and violation 

rate is made following the standard DDM of 

Davis (1988). Furthermore, we assume that no 

fisher will be falsely detected, that is: 

 

                         Pr (0) =0 

)(1

/)(1(

)(1

)(
)Pr(

tG

dttGd

tG

tg
m









                    (7)
 

  
)(

/)(1ln(
)Pr(

td

dttGd
m




             (8) 

 

Integrating both sides, we reach: 

 

 )(1ln)Pr(
0

tGdm
t

 
       (9)

 

  dmtG
t

)Pr()(1ln
0 ; Hence,  dmtG

t

)Pr(exp()(1
0 )  (10) 

  



t

dm

etG 0
)Pr(

)(1


        (11) 

 

In most developing countries, the fishery 

industry is managed as a “regulated open 

access” regime, which means there is no limit on 

                                                 
5  The hazard rate is independent of time, implying an 

exponential distribution for the time of detection.  

 
6 Note that the enforcement is constant and independent of the 

individual. That is because if it is cross-section data, the 

perception of enforcement may differ among fishers. But this 

catches. However, the model assumes that the 

rate of violation (m) is constant over time, then:  

cannot influence directly the probability of detection, though an 

influence may occur indirectly through m. The fisher may 

decrease his rate of violation because of a perception of high 

level of enforcement. This situation will not be accounted for 

and hence E will be ignored in the rest of the paper. 
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  tmetG )Pr()(1   ;   tmetG )Pr(1)(   , and, tmemtg )Pr()Pr()(     (12) 

 

Substituting the values of )(tg and )(tG  in 

equation (5) and assuming that all other 

variables are constant over time, we get  the 

value function of each violator (integrating and 

rearranging of terms that results in 13 is 

explained in Annex A):  

 



)),(..

Pr(m)

 FPr(m) R)),(..)),(..(
(.)

(( bnxEQnpbnxEQnpcmsEQmp
V nnnnnnmma 








             (13) 

 

The first term is the discounted profit from illegal 

fishing, while the second term is the discounted 

profit from legal fishing. Since the study focuses 

on the discounted illegal profit that depends on 

the rate of violation (first term), the second term 

will is dropped. Thus, the objective of the fisher 

will be to maximise the discounted illegal profit 

given by: 

 

(.)V  


 

Pr(m)

 FPr(m) R)),(..)),(..( ( bnxEQnpcmsEQmp nnnmma             (14) 

 

Then, the optimal level of violation for each fisher is given by: 

 

maxarg* m   


 

Pr(m)

FPr(m) R)),(.)),(.( ( bxEQpcsEQpm nnnmma n
                    (15) 

Assuming an interior solution, the first order condition is given by: 

 

0
Pr)(

FPr(m)) R)),(.)),(.((Pr))Pr()(Pr),(.(
2

(









 



 bxEQpcsEQpmmRFcsEQp

m

V nnnmmammmma n
   (16) 

 

Where Prm is the differential of  Pr with respect to m. Condition (17) suggests that illegal fishing will 

be attractive up to the point where:   

 

Pr

FPr(m) R)),(.)),(.(((Pr
Pr),(.

(










bxEQpcsEQpm
RFcsEQp nnnmmam

mmma

n
    (17) 

 

Which is the point where the optimal level of 

illegal fishing is reached and beyond which net 

expected marginal benefits (left hand side) will 

be less than the discounted net marginal cost 

(right hand side) of illegal fishing. Note that in 

expression (17) the fisher takes into account the 

cost advantage of illegal fishing (c-b) and the 

marginal expected fine R, F, and Prm. The fisher 

will never fish illegally (i.e. m=0) if:  

    

0Pr),(.  mmma RFcsEQp                                           (18) 
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This condition is fulfilled for those who never 

violate (NV). This equation could only be positive 

if m becomes positive, i.e. the fisher starts to 

violate and thereby earns more money. The 

question becomes: why are fishers not willing to 

violate? There are two justifications for making 

such an inquiry. Firstly; it can be attributed to the 

influence of some other important non-monetary 

reasons preventing fishers from violating 

regulations (i.e. normative factors) such as moral 

beliefs. Secondly, fishing is not likely to be the 

main source of income for this group.  

However, in a poor institutional environment with 

weak enforcement, condition (18) is highly likely 

to be positive. For instance, in a community of 

chronic violators, we can deduct from equation 

(18) that violators will totally switch to illegal 

fishing if: 

 

Pr

FPr(m) R)),(.)),(..(((Pr
Pr),(.

.(










bxEQpcsEQpm
RFcsEQp nnnmmam

mmma

n
  (19) 

This condition is fulfilled for those who are full-

time violators (CV). Note that the condition in 

equation (18) is independent of the discount 

rate, but depends on the expected marginal fine. 

The effect of key determining factors on the 

optimal violation rate 

This section employs the method of comparative 

statics to explore direction of the effect of each 

factor on the rate of violation. The first order 

equilibrium condition is calculated to derive 

comparative static results on the effects of 

various factors on the frequency of violation 

using the implicit differential rules in equilibrium 

(Chiang, 1984). These results will help us 

understand the nature of determining effects of 

some factors of policy relevance on the optimum 

value of violation, i.e. frequency of violation. 

Let the first order conditions of equation (16) be 

denoted by K and use it to derive the 

comparative statics of the model with respect to 

its parameters (See detailed derivation of results 

in Annex -B). 

 

(1) Effect of probability of fining R (enforcement) 

 

0
Pr)(

Pr
2













mF

R

K
       (20) 

There is no doubt that equation (20) has a 

negative value, given the fact that Prm, F and   

are all positive. This result implies that violation 

rate/ (m*) decreases with an increase in the 

expected probability of paying the fine R.

 

(2) Effect of level of fine F 

0
Pr)(

Pr
2













mR

F

K
                  (21) 

The same argument used in equation (20) 

applies to equation (21) suggesting that  

Violation rate (m*) decreases with an increase in 

the amount of fine (F). 

 

(3) Effect of probability of detection Pr(m) 
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0
Pr)(

))Pr(.(Pr

Pr)(

))Pr(.(Pr2Pr).(Pr

)Pr( 33


















mRFmRFRF

m

K mmm

   (22) 

For condition (22) to give the expected negative 

sign (negative impact of probability of detection 

on violation rate), probability of detection Pr (m) 

has to be greater than δ. This will hold true for 

larger values of Pr (m), implying that the higher 

the probability of detection, the lower is the  

violation rate. 

 

(4) Effect of discounting the future δ 

0
Pr)(

)))Pr()....(.(Pr2))Pr().(Pr),(.(
3













mRFmcQmPammRFcsEQpK mmmma

  (23)
 

The positive result of the specification in (23) is 

implied by the condition of optimality derived in 

equation (18) for violating fishers, e.g. for m > 0. 

Accordingly, this result suggests that violation 

rate increases with higher discount rates. That 

means the less important the future is for 

violators (who prefer a given amount of money 

today than to having the same amount in the 

future) the higher is the rate of violation. 

 

(5) Effect of price of / returns to illegal catch Pa 7 

0
Pr)(

)PrPr).(,(
2













 mmm

a

sEQ

p

V
                               (24) 

For equation (24) to be optimal the following condition must be hold: 

Pr > mPr
                                                        (25) 

This implies non-negativity of result (25) 

suggesting that frequency of violation increases 

with higher prices of (returns from) illegal (mixed) 

catch. This confirms that equation (25) has a 

positive sign. 

 

(6) Effect of fixed cost of the illegal net c 

?
Pr)(

.PrPr
2













 m

c

V m                 (26) 

Result (26) is indeterminate and would give the expected negative effect of a rise in the cost of 

acquiring the illegal net if the following holds: 

 
mmm /))Pr((Pr 

                                          (27)  
 

    

 

                                                 
7 Average price could be specified as )1(   nm PP where   is the proportion of small fish and 1-  is the proportion of 

normal fish. a P is used for simplicity. The positive sign of equation 24 implies that the illegal proportion outweighs the legal one 

and hence increases the price of the illegal net per kg. 
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Condition (27) simply requires that the 

incremental risk of being caught (marginal 

chance of detection) should be less than the 

average expected gains from not violating 

(opportunity cost of waiting for next period plus 

probability/opportunity of being caught) per 

violation attempt.  

 The analytical results of this extended DDM that 

account for size selectivity are compared with 

the results of earlier empirical studies in Table 1. 

It is clear that dynamic formulations have 

important advantages over static models as they 

could control for the effects of key factors such 

as discounting the future, costs and prices. 

Analytical results derived with the extended 

DDM, with size selectivity measures, confirm the 

findings of the empirical DDM assume perfect 

selectivity for the effects of key factors. These 

factors are probability of fining (enforcement), 

level of fine and discount rate. However, 

accounting for size selectivity instead of perfect 

selectivity could sign the indeterminate effects of 

price of and income from illegal fishing in 

addition to the change in probability of detection. 

 

Table (1): Summary of the comparative statics’ analyses 

Determinants of compliance/violation rates Dynamic models with size selectivity  

Probability of fining (R) Negative  

Level of fine (F) Negative  

Probability of detection Must be higher than the discount rate to deter 

violation 

Discount rate (δ) Positive  

Price of / income from illegal catch Positive 

Fixed cost of illegal fishing Undetermined 

 

Dynamic formulation with size selectivity also 

revealed interesting economic meaning in the 

effects of and relationship between probability of 

detection and the social discount rate. The 

conclusion from the static model of Becker 

(1968) and other studies that used static 

formulations is that a penalty (fine) should be 

high to deter violation. On the other hand, 

studies that applied the dynamic deterrence 

model suggest that crime is more likely to be 

deterred by increasing the hazard of being 

caught than by raising the fine (Akpalu, 2008; 

Davis, 1988; Lueng, 1991). 

Summary  

This paper presented the DDM analytical 

framework adapted in the study to investigate 

the importance factors that determine violation 

rates. It also adapted DDM that accounting for 

size selectivity instead of perfect selectivity used 

in literature. This give interesting results sign the 

indeterminate effects of price of and income from 

illegal fishing in addition to the change in 

probability of detection. 

The extended model helps to classify fishers into 

categories of chronic violators and non-violators. 

These categories will help policy makers and 

managers design policy measures and 

instruments suited for each group. In spite of 

these apparent advantages gillnet size 

selectivity hasn’t been used in static deterrence 

models and studies that employed DDM have so 

far only used perfect selectivity to analyse 

noncompliance with fishery regulation. 

 The method of comparative statics is employed 

to derive analytical results on the sensitivity of 

optimal violation to a number of key factors of 

high relevance to compliance with regulations 

designed to protect against over-fishing. 

Analytical results obtained with this extended 

DDM confirm the findings of earlier empirical 
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studies employing alternative static and dynamic 

formulations and reveal more interesting 

economic meaning of modelled relations. The 

study shows that in the artisanal fishery industry 

in developing countries, violation rates are 

bound to be high. This is the case, given that 

probability of detection, enforcement and levels 

of fine are typically low and poverty levels lead 

to high impatience about the future (social 

discounting). Nevertheless, the relative 

magnitude of the effects of each of these factors 

on compliance with regulations remains an 

important empirical question that requires further 

investigation for prioritisation of policy actions. 

The paper however, provides a general 

theoretical model that could be valid and 

potentially applicable to developing countries 

with similar fishing circumstances of regulated 

open access such as the one modelled her. 
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Annexures 

 

Annexure A: The dynamic deterrence with gillnet size selectivity specification 

 

By taking into consideration the definitions of 

illegal profits 𝜋𝑚(𝑚, 𝑐, 𝑝𝑎,𝑄𝑚,𝐸𝑚,𝑠) =

𝑚(𝑝𝑎.𝑄𝑚 (𝐸𝑚,𝑠) − 𝑐(𝑠)) = 𝑚(𝑝𝑎.𝑄𝑚 − 𝑐(𝑠))  in 

the first period and the legal profit  

𝜋𝑛(𝑛, 𝑏, 𝑝𝑛,𝑄𝑛,𝐸𝑛 , 𝑥) = 𝑛(𝑝𝑛.𝑄𝑛 (𝐸𝑛,𝑥) − 𝑏(𝑥)) =

𝑛(𝑝𝑛.𝑄𝑛 − 𝑏(𝑥) in the second period: 

Let us denote the illegal profits by 𝜋𝑚  and the 

legal profit, by 𝜋𝑛  and also  

𝑣(𝑝𝑎.𝑄𝑚 , 𝐸𝑚,, 𝑠, 𝑐, 𝑚, 𝑛, 𝑏, 𝑥, 𝑄𝑛 , 𝐸𝑛 , 𝑝𝑛,)  by v (. ) and Pr(m)by B  for simplicity;  then the 

value function for each violator is:  

 

𝑣(. ) = ∫ 𝑒−𝛿𝑡(𝜋𝑚 + 𝜋𝑛) 
∞

0
(1 − 𝐺(𝑡)) + 𝜋𝑛𝐺(𝑡) − 𝑅𝐹𝑔(𝑡)𝑑𝑡                       (𝐴. 1)   

𝑣(. ) = ∫ 𝑒−𝛿𝑡(𝜋𝑚 + 𝜋𝑛 − 𝜋𝑚𝐺(𝑡))
∞

0
− 𝑅𝐹𝑔(𝑡)𝑑𝑡                       (A.2) 

 

By developing further the hazard rate 

equationPr(𝐸, 𝑚) =
𝑔(𝑡)

1−𝐺(𝑡)
, we manage to get the 

values of  G(t) = 1-e-Bt and g(t) = B eBt and 

B=Pr(m) then A4.2 to becomes: 

 

𝑣(. ) = ∫ 𝑒−𝛿𝑡(𝜋𝑚 + 𝜋𝑛 − 𝜋𝑚(1 − 𝑒−𝐵𝑡)) − 𝑅𝐹𝐵𝑒−𝐵𝑡)
∞

0
𝑑𝑡                           ( 𝐴. 3)         

𝑣(. ) = ∫ 𝑒−𝛿𝑡(𝜋𝑛 + 𝜋𝑚𝑒−𝐵𝑡) − 𝑅𝐹𝐵𝑒−𝐵𝑡)
∞

0

𝑑𝑡                                                   (𝐴. 4) 

𝑣(. ) = ∫ 𝑒−𝛿𝑡(𝜋𝑛 + (𝜋𝑚 − 𝑅𝐹𝐵)𝑒−𝐵𝑡)
∞

0
𝑑𝑡                                                          (𝐴. 5)  

𝑣(. ) =
𝜋𝑛

𝛿
+

𝜋𝑚

𝐵+𝛿
                                                                                                            (𝐴. 6)                 

            

Which is in the expanded form (substituting for Pr(m)) is:  

𝑣(. ) =
(𝑚 𝑝𝑎.𝑄𝑚 (𝐸𝑚,𝑠) − 𝑚 𝑐(𝑠) − (𝑛 𝑝𝑛.𝑄𝑛 (𝐸𝑛,𝑥) − 𝑛 𝑏(𝑥) − 𝑅𝐹𝑃𝑟(𝑚)

𝛿 + Pr (𝑚)
 

+
𝑛 𝑝𝑛.𝑄𝑛 (𝐸𝑛,𝑥) − 𝑛 𝑏(𝑥)

𝛿
                                                                          (𝐴. 7 

 This will give the value function for each violator as: 

   𝑣(. ) =
(𝑚 𝑝𝑎.𝑄𝑚 (𝐸𝑚,𝑠)−𝑚 𝑐(𝑠)−(𝑛 𝑝𝑛.𝑄𝑛 (𝐸𝑛,𝑥)−𝑛 𝑏(𝑥)−𝑅𝐹𝑃𝑟(𝑚)

𝛿+Pr(𝑚)
     (𝐴. 8) 

The second term in equation A47 is excluded since doesn’t include (m) 

 

Annexure B: Derivation of comparative statics’ properties 

Employing the first-order conditions’ equation 

14, which determine the optimal frequency of 

violation (i.e. m*) implicit in equation B1, we can 

derive the comparative static’ (CS) properties of 

m* with respect to its parameters   

𝑝𝑎., 𝐹, 𝑅, 𝐶, 𝑏, 𝑃𝑟, 𝛿   . Let K be 

 K= 
𝑑𝑉

𝑑𝑚
=

( 𝑝𝑎.𝑄𝑚 (.)− 𝑐(𝑠)−𝑅𝐹𝑃𝑟𝑚 )(𝛿+Pr(𝑚))−𝑃𝑟𝑚(𝑚 𝑝𝑎.𝑄𝑚 (.)− 𝑚𝑐(𝑠)−(𝑛 𝑝𝑛.𝑄𝑛 (.)−𝑛 𝑏(𝑥)−𝑅𝐹𝑃𝑟

(𝛿+Pr )2                                
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                                                                                                                               (B.1) 

We simplify 4B1 using above definitions of 𝜋𝑚 and 𝜋𝑛 to: 

𝐾 =
𝑑𝑣

𝑑𝑚
=

(𝜋𝑚𝑚 − 𝑅𝐹𝑃𝑟𝑚) (𝛿 + Pr(𝑚)) − (𝑃𝑟𝑚(  𝜋𝑛 − 𝑅𝐹𝑃𝑟(𝑚))

(𝛿 + Pr )2
= 0 

                                                                         (B.2) 

Where, (𝑃𝑟𝑚 𝑖𝑠 
𝑑𝑃𝑟

𝑑𝑚
  is and

  
 𝜋𝑚𝑚   is  

𝑑𝜋

𝑑𝑚  
 

Invoking the Implicit Function Theorem for 

function K (m*(α), α), where  is a vector of the 

set of arguments in the model and m is at its 

optimal level m* (hence omitting the * for 

simplicity), the following holds for each argument

j at the optimum (Chiang, 1984): 

 

𝑑𝑘

𝑑𝛼
=

𝑑𝑘

𝑑𝑚
∗

𝑑𝑚

𝑑𝛼
+

𝑑𝑘

𝑑𝛼
= 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑑𝑚

𝑑𝛼
= −

𝑑𝑘
𝑑𝛼
𝑑𝑘
𝑑𝑚

                         (𝐵. 3) 

 

From 4B.1 –4B3 we get the following CS results: 

(1) Probability of fining R (enforcement) 

     

𝑑𝐾

𝑑𝑅
=

(−𝐹𝑃𝑟𝑚)(𝛿 + Pr(𝑚)) + 𝑃𝑟𝑚 𝐹𝑃𝑟(𝑚)

(𝛿 + Pr )2
=

𝐹𝑃𝑟𝑚(−𝛿−𝑃𝑟+𝑃𝑟)

(𝛿 + Pr )2
 

=
−𝐹𝑃𝑟𝑚 𝛿

(𝛿 + Pr )2
< 0                                                                          (𝐵. 4) 

B4 has to yield a negative value since the 

denominator is +ve and F, Prm(m) and δ are all 

+ve values (Prm(m) is +ve by the assumption of 

concavity of Pr(m) function, e.g. hazard rate is 

increasing in frequency of violation m). This 

result 
𝑑𝐾

𝑑𝑅
< 0 together with the satisfaction of the 

second order conditions of value function𝑣(. ),  

 
𝑑𝐾

𝑑𝑅
< 0 which implies that, 

𝑑𝑚

𝑑𝑅
=

𝑑𝑘

𝑑𝑟
/

𝑑𝑘

𝑑𝑚
< 0                           (B.5) 

Result B45 implies that violation rate – frequency (optimal m) decreases with an increase in the 

probability of paying a fine (R) if detected. 

 

(2) Level of fine 

𝑑𝐾

𝑑𝐹
=

(−𝑅𝑃𝑟𝑚)(𝛿 + Pr(𝑚)) + 𝑃𝑟𝑚 𝑅𝑃𝑟(𝑚)

(𝛿 + Pr )2
=

𝑅𝑃𝑟𝑚(−𝛿−𝑃𝑟+𝑃𝑟)

(𝛿 + Pr )2
 

=
−𝑅𝑃𝑟𝑚  𝛿

(𝛿 + Pr )2
< 0                                                                                     (𝐵. 6)       

    

 

Following the same argument as above 

(denominator is +ve and R, Prm(m) and δ are all 

+ve values) it is clear that 
𝑑𝐾

𝑑𝐹
< 0 . Again, 

together with value function’s conditionality 

(that
𝑑𝐾

𝑑𝑚
< 0) results 4B.5 implies that frequency 

of violation (optimal m) decreases with an 

increase in the amount of the fine (F). 
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(3) Probability of detection Pr(m) 

𝑑𝐾

𝑑𝑃𝑟(𝑚)
=

𝑅𝐹𝑃𝑟𝑚 (𝛿+Pr(𝑚)−2(𝑃𝑟𝑚𝑅𝐹𝑃𝑟(𝑚)

(𝛿+Pr )3 =
𝑅𝐹𝑃𝑟𝑚 (𝛿−Pr(𝑚))

(𝛿+Pr )3 ≤ 0       (𝐵. 7)    

                

For Result B7 to yield the expected negative sign 

(negative impact of probability of detection on 

violation rate) Pr(m) has to be greater than δ. 

This will hold true for larger values of Pr(m) 

implying that the higher the probability of 

detection, the lower is frequency of violation. 

(4) Discount rate 
𝑑𝐾

𝑑𝛿
=

 

 

=
−( 𝑝𝑎.𝑄𝑚 (.)− 𝑐(𝑠)−𝑅𝐹𝑃𝑟𝑚)(𝛿+  (Pr (𝑚))+2(𝑃𝑟𝑚(𝑚( 𝑝𝑎.𝑄𝑚 –𝑚𝑐(𝑠)−𝑅𝐹𝑃𝑟(𝑚)))

(𝛿+Pr )3 = ≥

0                                                                                                                               (𝐵. 8)
 

The non-negativity of Result B7 is implied by the 

condition of optimality derived in Equation 18 for 

violating fishers (e.g. for m > 0). Result C8 

accordingly suggests that violation rate 

increases with higher discount rates, i.e. less 

important is the future. 

(5) Return from violation (price of illegal catch) 

𝑑𝐾

𝑑𝑃𝑎
=

𝑄𝑚 (𝐸𝑚,𝑠)(𝛿 +   (Pr(𝑚)) − 𝑚𝑃𝑟𝑚𝑄𝑚 (𝐸𝑚,𝑠)

(𝛿 + Pr )2
=

𝑄𝑚 (𝐸𝑚,𝑠)(𝛿 + Pr − Prm)

(𝛿 + Pr )2
≥ 0   

 

                                                                              (B.9) 

Concavity of Pr(m) implies that the value 

function Pr(m) ≥ its marginal value Prm(m) at 

optimal levels of m, which implies non-negativity 

of Result B9, which suggests that frequency of 

violation increases with higher prices of (returns 

from) illegal (mixed) catch 

(6) Fixed cost of illegal net - c 

𝑑𝐾

𝑑𝑐
=

−𝛿 − Pr + mPrm

(𝛿 + Pr )2
=?                                                                               (B. 10) 

Result B.10 is indeterminate.  

For this to yield the expected negative effect of cost of acquiring the illegal net the following must 

hold: 

 

Prm >
𝛿+Pr(m)

m
                                                                                                 (B. 11)

   

     

 

Condition B.11 simply requires that the 

incremental risk of being caught (marginal 

chance of detection) should be less than the 

average expected gains from not violating 

(opportunity cost of waiting for next period plus 

probability/opportunity of being caught) per 

violation attempt.   
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