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1.	 INTRODUCTION

In the family of aging distributions such as Ex-
ponential, Rayleigh, Pareto, Weibull, Lognormal 
and Gamma distributions etc. the Weibull dis-
tribution holds a key position and offers a wide 
range of applications in reliability and biological 
disciplines. The Weibull model was first applied 
by Waloddi Weibull for analyzing the breaking 
strength of materials, and so far it has been fre-
quently used in various applied fields for model-
ing real phenomena. Some practical utilities of 
the Weibull model have been studied by Attardi 
et al. [2], Durham and Padgett [6] and Nadara-
jah and Kotz [13]. Due to its shape parameter, 
the Weibull model is a very flexible model and 
provides the characteristics of other ageing dis-
tributions such as Rayleigh and Exponential 
distributions. The Weibull model has monotonic 
hazard function and has been found very handy 
for modeling lifetime data with monotonic failure 
rates. But, it is inappropriate to use for model-
ing data with non-monotonic failure rates such 
as bathtub, upside down bathtub (unimodal) or 
modified upside down bathtub (modified unimod-
al) shaped failure rates. The characteristics of 
non-monotonic failure are quite common in bio-
logical studies and reliability engineering. For ex-
ample, the behaviour of human mortality follows 
bathtub failure rate where initially the failure rate 
is very high, then gradually decrease followed by 
approximately a constant period and then grad-
ually increases. The unimodal failure rate can 
be observed in biological studies where the fail-
ure rate reaches its maximum (peak point) after 
some finite period of time and then gradually de-
creases. The unimodal failure rate is very con-
venient for discovering the time period having 
maximum risk. The death rate of cancer patients 
is observed to follow modified unimodal failure 
rate. The unimodal failure rate has three phases, 
initially increases, then decreases, and again in-
creases, for further about unimodal failure rate 
we call cf. Zajicek [21]. To obtain non-monotonic 
failure rate, the Weibull model has been modi-
fied and generalized by so many researchers, for 
example, additive Weibull (AW) distribution due 
to Xie and Lai [20], generalized flexible Weibull 
extension (GFWEx) distribution of Ahmad and 
Iqbal [1], transmuted Weibull (TW) distribution 
by Aryal and Tsokos [3], transmuted modified 
Weibull (TMW) distribution due to Khan and 

King [10], Kumaraswamy transmuted exponen-
tiated additive Weibull (KTEAW) distribution of 
Nofal et al. [15] and transmuted additive Weibull 
(TAW) distribution studied by Elbatal and Ary-
al [7]. Bebbington et al. [5] proposed a very in-
teresting modified form of Weibull model called 
flexible Weibull extension (FWEx) distribution. 
The FWEx distribution has two parameters and 
its cumulative distribution function (CDF) is given 
by
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The Survival function (SF) of TFWEx random 
variable is 
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with hazard function (HF),
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The FWEx distribution has non-monotonic HF. 
As we discussed earlier that lots of generalized 
forms of Weibull distribution have been proposed 
that has non-monotonic failure rate. But, many of 
these generalized forms of Weibull model does 
not have closed form of its CDF, SF and HF for 
example, Gamma Weibull (GW) distribution pro-
posed by Stacy [16], beta inverse Weibull (BIW) 
distribution proposed by Hanook et al. [9] and 
beta modified Weibull (BMW) distribution due to 
Silva et al. [18]. Due to incomplete form of CDF, 
the estimation difficulties have increased. To 
address some of the problems that have been 
occurred with some modified forms of Weibull 
model; we propose a new model by generalizing 
the FWEx distribution using quadratic rank trans-
mutation map (QRTM). The new model may be 
named as transmuted flexible Weibull extension 
(TFWEx) distribution, and possess a closed form 
of CDF allowing a very simple expression for SF 
and HF. The proposed model provides greater 
flexibility and modeling real phenomena with in-
creasing and modified unimodal shaped failure 
rate.					   
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A transmuted random variable has the CDF giv-
en by

( ) ( ) ( ) ( )( )2
 1 ,   1,G z F z F zβ β β= + − ≤ 	       (3)

here β represents the transmuted parameter, by 
putting 0,β = in (3) we get the CDF of the parent 
random variable, the transmuted density associ-
ating to (3) is given by

( ) ( ) ( )( ) 1 2 .g z f z F zβ β= + −  		        (4)

Transmutation is a very convenient approach 
to extend any parent distribution. The method 
of QRTM has been applied by many different 
authors to extend the parent distribution for ex-
ample, Aryal and Tsokos [3] studied transmuted 
Weibull (TW) distribution has the CDF given by

( ) ( )( )1 1 ,   z, , 0,   1.x x
TWG z e e
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Ashour and Eltehiwy [4] introduced transmuted 
exponentiated modified Weibull (TEMW) distri-
bution defined by CDF
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where, z, , , 0,   1.α η γ θ β, > ≤  

Elbatal and Aryal [7] proposed transmuted addi-
tive Weibull (TAW) distribution has the CDF giv-
en below

( ) ( )( )1 1 , z x z x
TAWG z e e
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where,  z, , , ,   .0 1α η γ θ β ≤, >

Merovci et al. [12] studied the transmuted gen-
eralized inverse Weibull (TGIW) distribution de-
fined by CDF

( ) ( ) ( )( )1 ,x x
TGIWG z e e

α αγ λ γ λβ β− −= + −

where, z, , 0,   1α λ γ β, > ≤ .

By using (1) and (2) in (3) and (4) we get the CDF 
and PDF of the TFWEx model, respectively. The 
key objectives of the present article is to propose 
a new lifetime model having a closed form of 
CDF and capable of modeling with increasing, 
unimodal or modified unimodal failure rates. The 
proposed model is very flexible and due to its 
increasing and modified unimodal failure rate, it 
can be useful for modeling the lifecycle of a ma-
chine’s component in reliability engineering and 
lifecycle of cancer patients in biological studies. 
This article is organized as follows: Section 2, 

contains definition and graphical display of the 
TFWEx model. Section 3, derives basic proper-
ties. Section 4, 5, 6 and 7 discusses the moment 
generating, characteristics, probability generat-
ing, and factorial moment generating functions 
of the model, respectively. Section 8, derives the 
maximum likelihood estimates and confidence 
bounds of the unknown parameters. Section 9, 
discusses orders statistics; Section 10, contains 
the analysis of real data sets using the proposed 
model. Finally, section 11, provides concluding 
comments. 

2.	 TRANSMUTED FLEXIBLE   WEIBULL 
EXTENSION DISTRIBUTION	

A transmuted flexible Weibull extended random 
variable has the CDF given by
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here , 0,θ λ > while 1.β ≤  Using  =0,β in (5), we 
get the CDF of FWEx distribution. While, using 

0,β θ= = and ( )ln ,γ λ=  in (5), we have the CDF 
of exponential distribution. Also, using 0,θ = and

( )ln ,γ λ=  in (5), we get the CDF of transmuted 

exponential (TE) distribution. 

The density associating to (5) is
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The SF associating to (5) is
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The HF corresponding to (5) is

 

( )

               

          

2  1 2  

; , ,  .

1  1 1

z zz z zz e e

zz zz e

e e e

e e

e e e
z

h z

e e

θ θθ λ λλ

θθ λλ

θλ β β

θ λ β

β

     − −   −       − −

   − −     −

− − −

− −

   + − +  
    =

      − − +       

  

The figure 1, 2 & 3 shows the HF’s of the TFWEx 
distribution for different parameter values. 
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Figure 1: HF of TFWEx distribution for different 
parameter values.

Figure 2: HF of TFWEx distribution, for different 
parameter values.

Figure 3: HF of TFWEx distribution, for different 
parameter values.

3.	 BASIC PROPERTIES

This part of the article provides the basic mathe-
matical properties of TFWEx distribution.

3.1	 Quantile and Median

The thq quantile denoted by qz  of the TFWEx 
model is obtained as 

( ) ,qG z q=  

         

1 1 .
z zq qz zq qee ee e q
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On solving, we get
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So (6) becomes
2 0.q qz Izλ θ− − =

Finally, we get
2 4  .

2q
I Iz λθ

λ
+ +

=  				         (7)

Using 0.50,q = in (7), we get the median of 
TFWEx distribution. Also, using 0.25,q = and

0.75,q = in (7), one may get, the 1st and3rd quar-
tile of TFWEx distribution, respectively. 

3.2	 Moments

Moments play a fundamental role in describing 
the shape and behaviour of a statistical model. 
In this subsection, we derive the thr moments of 
TFWEx distribution. 	  

Theorem 1: If Z has TFWEx distribution, then 
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the thr moments of Z denoted by '
rµ is given by
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Using above transformation in (10), we get
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Using the definition of gamma function
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Using (12), (13), (14) and (15) in (9), we get the 
proof of thereon 1.

3.3	 Generation of Random Numbers

The random number as z of the TFWEx distribu-
tion can be obtained as

( )  ,G z R= 	 Where ( )~ 0,1R U  
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It is observed that the expression for generation 
of random numbers from TFWEx distribution has 
a closed form solution, so one can use (7) to gen-
erate random numbers from TFWEx distribution.

4.	 MOMENT GENERATING FUNCTION

The moment generating function (MGF) is a 
prominent approach to generate moments of a 
statistical model. If Z has TFWEx distribution, 
then its MGF denoted by ( )zM t is derived as
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Using the result of theorem 1, in (18), one may 
easily derive the MGF of TFWEx distribution. 

5.             CHARACTERISTIC FUNCTION

The moment generating function is frequently 
used to generate moments a distribution. But, 
the MGF does not exist for all distributions. 
Therefore, alternatively one can use character-

istic function (CF) to calculate moments of a sta-
tistical distribution. If Z has TFWEx distribution, 
then its CF represented by ( )z tφ is obtained as

( ) ( )  ,itz
z t E eφ =

( ) ( )
0

,z
z

ite gt z dzφ
∞

= ∫

( ) ( ) ( )
0 0

log
.

!z

r
r

r

it
z z dzt g

r
φ

∞∞

=

=∑ ∫ 		      (19)

Using the result derived in theorem 1, in (19), 
one can easily obtain the CF of TFWEx distribu-
tion. 

6.        PROBABILITY GENERATING

	 FUNCTION

The probability generating function (PGF) of TF-
WEx random variable can be derived as

( ) ( )  zG Eγ γ=

( ) ( ) ( )ln

0

,z g z dzG e γγ
∞

= ∫

( ) ( ) ( )
0 0

log
.

!

r
r

r
G z g z dz

r
γ

γ
∞∞

=

=∑ ∫ 		      (20)

One may get the complete proof of the PGF of 
TFWEx distribution by using the result of theo-
rem 1, in (20). 

7.        FACTORIAL MOMENT

	 GENERATING FUNCTION

The factorial moment generating function 
(FMGF) of TFWEx random variable can be ob-
tained as

By definition

( ) ( ){ }0   1 ,zH Eδ δ= +

( ) ( ) ( )ln 1
0

0

 ,zH e dzg zδδ
∞

+= ∫

( ) ( ) ( )
0

0
0

log 1
.

!

r
r

r
z g z dz

r
H δ

δ ∞∞

=

+
=∑ ∫ 		      (21)

One may obtain the complete proof of the FMGF 
of TFWEx distribution by using the result of the-
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orem 1, in (21). 

8.	 ESTIMATION

In this section, we use maximum likelihood es-
timation (MLE) procedure for estimating the un-
known parameters of the TFWEx distribution, 
and deriving their asymptotic confidence bounds.

8.1	 Maximum likelihood estimation

Let a sample say 1 2, ,  . . . kZ Z Z  obtained from TF-
WEx with parameters ( , ,  )θ λ β then the likelihood 
function of this sample is

( )
0

 , ,; ,  
k

j
j

L g z θ λ β
=

=∏  

            

2
0

    1 2   ,
z zj jj z zj j

j
zk

z e e

j j

L e e e
z

θ θλ λθλθλ β β
   
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 
 
 
 

∏  

the log-likelihood function is as
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Taking the partial derivatives of the result in (22) 

on parameter and equating to zero, we have
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It is clear that the expressions provided in (23)-
(25) does not have a closed forms solution; 
therefore, the estimates of the model parameters 
can be obtained numerically by iterating proce-
dure such as newton Raphson method. We used 
“SANN” algorithm in R language to get numerical 
estimates of the unknown parameters of the pro-
posed model. 

8.2       Asymptotic confidence bounds 

As it is observed that expressions provided in 
(23)-(25) are not in closed forms. Therefore, it 
is quite difficult to obtain the exact distribution of 
the MLE’s. So, it is better to derive the asymp-
totic confidence intervals of the unknown param-
eters. The most frequently used approach is to 
assume that the MLE’s ( )ˆ ˆ,  ˆ,  θ λ β are distributed 
approximately normal with mean ( ), ,θ λ β  and 
covariance matrix  All the second order deriva-
tives for the density of TFWEx distribution exist. 
Thus we have

~ ,  ,

ˆ

ˆ

ˆ
N

θ θ
λ λ

ββ

         Σ             
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Since  contains unknown parameters, to get esti-
mate of, so we replace the unknown parameters 
by their corresponding MLE’s, given by

1ˆ ˆ ˆ

ˆ ˆ ˆˆ

ˆ
.

 ˆ ˆ

V V V

V V V

V V V

θθ θλ θβ

λθ λλ λβ

βθ βλ ββ

−
 
 

Σ =  
 
  

 		   		      (26)
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Using (25), approximately 100 ( )1 %α−  % con-
fidence intervals for ,  θ λ  and β can be deter-
mined respectively, as

 
2

ˆ ˆ  ,Z Vα θθθ ±      
2

ˆ ˆ  ,Z Vα λλλ ±      
2

ˆ ˆ   .Z Vα βββ ±

 

Here,  
2

Zα  represents the upper  
2

thα 
 
 

percentile 

of the standard normal (SN) distribution. 

9.	 ORDER STATISTICS

Let 1, 2     . . . kZ Z Z  are independently and identi-
cally distributed (i.i.d) ordered random variables 
taken from TFWEx with parameters ( , ,  )θ λ β  in 
such a way that ( ) ( )1: : .  .  .   .k k kZ Z≤ ≤   Then, the 

density of ( ) :Z i k , 1,  2,  3,  . . . ,  i k=  is

( ) ( ) ( )

( ) ( )
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1  ,
, 1

             , 1 ,  .            (27)
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( ) ( ) ( )
!  .

1 ! 1 ! !
kC

i j i k j
=

− − − −  

We derive the expressions, for the thk order sta-
tistics as ( ) ( )1 2 max , ,  . . . , kkZ Z Z Z=  , 1st order 

statistics as ( ) ( )1 21 min , ,  . . . , kZ Z Z Z= , and for 

the median order statistics as 1 mZ + , if  2 1.k m= +

9.1	 Distribution of Maximum, Minimum 
and Median Order Statistics

Let a random sample 1, 2     . . . kZ Z Z   of size k se

lected from TFWExD ( , ,  )θ λ β  with CDF given in 
(5). Then, the density of the maximum, minimum 
and median order statistics is derived in (32), 
(33) and (34) respectively.
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Also, the PDF of median order statistics is
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9.2	  The joint density of i-th and j-th Order 
Statistics

The joint density of ith and jth order statistics 
from TFWEx distribution is 
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For special case: let j=k and i=1, we get the 
joint density of maximum and minimum order 
statistics
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10.	 APPLICATION

In this section, we analyze four data sets in order 
to prove the practicality of the transmuted flexible 
Weibull extension distribution. We applied the 
TFWEx distribution to four well-known real data 
sets, and the result of its goodness of fit is com-
pared with flexible Weibull extension and inverse 
flexible Weibull extension (IFWEx) distribution 

proposed by El-Gohary et al [8]. We considered 
Akaike’s Information Criterion (AIC), Bayesian 
information criterion (BIC), Consistent Akaike’s 
Information Criterion (CAIC), Hannan-Quinn in-
formation criterion (HQIC), Anderson–Darling 
(AD) test statistic, Cramer-von-Misses (C.M) test 
statistic and  Kolmogorov–Smirnov (K-S) test 
statistic as investigative measures. On behalf of 
these investigative tools, it observed that TFWEx 
distribution provides best fit than the FWEx and 
IFWEx distributions.

Example: 1

The first data set is obtained from Nicholas and 
Padgett [14], consists of 100 observations on 
breaking stress of carbon fibers (in Gba). The 
data are as: 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 
3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 
1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43, 
2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 
3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31, 2.85, 
2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 
2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 
0.98, 2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 
0.81, 5.56, 1.73, 1.59, 2.00, 1.22, 1.12, 1.71, 
2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 
1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 
2.79, 4.70, 2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 
2.12, 1.89, 2.88, 2.82, 2.05, and 3.65. The TF-
WEx distribution along with FWEx and IFWEx 
distribution is applied to this data and the final 
result is summarized in table 1 and 1.1.

Table 1:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.   

Dist. MLEs A.D C.M K-S

TFWEx
ˆ =0.41 λ̂ =2.34

β̂ =-0.81
0.50 0.08 0.06

FWEx
θ̂ =0.43, λ̂ = 3.69

0.64 0.11 0.07

IFWEx
θ̂ = 1.13, λ̂ =0.49

3.82 0.64 0.25

Table 1.1:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.

Dist. AIC BIC CAIC HQIC
TFWEx 289.9 297.7 290.1 293.0
FWEx 290.5 295.7 290.6 292.6
IFWEx 360.1 365.3 360.2 362.2
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Example: 2

The second data set is obtained from Khan and 
Jan [11] represents the times of failure for a 
sample of thirty devices selected from eld-track-
ing study of a larger system. The times are 2.75, 
0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 
1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 
0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 
0.23, 3.00, 0.80, 2.45 and 2.66. The TFWEx dis-
tribution along with FWEx and IFWEx distribu-
tion is applied to this data and the final result is 
summarized in table 2 and 2.1.

Table 2:  Goodness of fit results for TFWEx, 
FWEx and IFWEx

Dist. MLEs A.D C.M K-S

TFWEx
θ̂ =0.09, λ̂ = 0.35

β̂ = -0.9

1.52 0.22 0.28

FWEx
θ̂ =  0.15, λ̂ = 0.32

2.04 0.32 0.39

IFWEx
θ̂ = 0.03 , λ̂ = 0.62

1.60 0.24 0.29

Table 2.1:  Goodness of fit results for TFWEx, 
FWEx and IFWEx

Dist. AIC BIC CAIC HQIC
TFWEx 97.4 101.6 98.39 98.8
FWEx 111.3 114.1 111.7 112.2
IFWEx 106.3 109.1 106.7 107.2

Example: 3

The third data set is obtained from Tahir et al. 
[19] represents failure times of 84 Aircraft Wind-
shield. The times are 0.040, 1.866, 2.385, 3.443, 
0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 
3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 
2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 
1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 
1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 
4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 
2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 
2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 
1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 
4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 
3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 
2.324, 3.376 and 4.663. The TFWEx distribution 
along with FWEx and IFWEx distribution is ap-
plied to this data and the final result is summa-

rized in table 3 and 3.1.

Table 3:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.

Dist. MLE A.D C.M K-S

TFWEx
θ̂ =  0.31, λ̂ = 0.83

β̂ =-0.93
3.21 0.47 0.23

FWEx
θ̂ = 0.30, λ̂ =1.39

5.59 0.90 0.31

IFWEx
θ̂ = 0.06 , λ̂ =0.49

1.82 0.22 0.48

Table 3.1:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.

Dist. AIC BIC CAIC HQIC
TFWEx 316.5 323.9 316.8 319.5
FWEx 355.6 360.5 355.7 357.6
IFWEx 378.4 383.3 378.6 380.4

Example: 4

The fourth data set is obtained from Tahir et al. 
[19] represents Failure times of 63 Aircraft Wind-
shield. The times are 0.046, 1.436, 2.592, 0.140, 
1.492, 2.600,  0.150, 1.580, 2.670, 0.248, 1.719, 
2.717, 0.280, 1.794, 2.819, 0.313, 1.915, 2.820, 
0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 
1.978, 3.003, 0.900, 2.053, 3.102, 0.952, 2.065, 
3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 
1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092, 
2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 
4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 
1.262, 2.543 and 5.140. The TFWEx distribution 
along with FWEx and IFWEx distribution is ap-
plied to this data and the final result is summa-
rized in table 4 and 4.1.

Table 4:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.

Dist. MLE A.D C.M K-S

TFWEx
θ̂ = 0.31, λ̂ =0.32

β̂ =- 0.92
1.51 0.26 0.23

FWEx
θ̂ =0.29, λ̂ = 0.6

2.92 0.52 0.32

IFWEx
θ̂ =0.082, λ̂ = 0.56

1.26 0.20 0.37

Table 4.1:  Goodness of fit results for TFWEx, 
FWEx and IFWEx.
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Dist. AIC BIC CAIC HQIC
TFWEx 221.05 227.47 221.45 223.57
FWEx 242.70 246.99 242.90 244.39
IFWEx 245.23 249.51 245.43 246.91

11.	 CONCLUSION

A three parameters transmuted version of the 
flexible Weibull extension distribution entitled as 
Transmuted Flexible Weibull Extension distribu-
tion by adopting the quadratic rank transmutation 
map is studied. The new model is capable of 
modeling data with increasing, unimodal or mod-
ified unimodal failure rates. Statistical properties 
of the proposed distribution with estimation of 
parameters by maximum likelihood procedure 
are discussed. To show practical workability of 
the suggested model four real data sets are   an-
alyzed.					     We are 
hopeful that the proposed model will attract a 
widespread applications in survival and reliability 
disciplines. 
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