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Review of  Mathematical Approach to Engineering Problems

Mathematics is widely used in every engineering fields. In this 
paper, several examples of applications of mathematics in me-
chanical, chemical, optimization and electrical engineering are 
discussed. Laplace transform mathematical tool is applied to 
solve problems. Applications here are the real ones found in the 
engineering fields, which may not be the same as discussed in 
many mathematics text books. The purpose of this paper is to 
relate mathematics to engineering field.
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1.Introduction  

Mathematical modeling has always been an 

important activity in science and engineering. 

The formulation of qualitative questions about 

an observed phenomenon as mathematical 

problems was the motivation for and an integral 

part of the development of mathematics from 

the very beginning. Although problem solving 

has been practiced for a very long time, the use 

of mathematics as a very effective tool in 

problem solving has gained prominence in the 

last 50 years, mainly due to rapid 

developments in computing. Computational 

power is particularly important in modeling 

engineering systems, as the physical laws 

governing these processes are complex. 

Besides heat, mass, and momentum transfer, 

these processes may also include chemical 

reactions, reaction heat, adsorption, 

desorption, phase transition, multiphase flow, 

etc. This makes modeling challenging but also 

necessary to understand complex interactions. 

All models are abstractions of real systems and 

processes. Nevertheless, they serve as tools 

for engineers and scientists to develop an 

understanding of important systems and 

processes using mathematical equations. In all 

engineering context, mathematical modeling is 

a prerequisite for: design and scale-up; process 

control; optimization; mechanistic 

understanding; evaluation/planning of 

experiments; trouble shooting and diagnostics; 

determining quantities that cannot be 

measured directly; simulation instead of costly 

experiments in the development lab; feasibility 

studies to determine potential before building 

prototype equipment or devices. 

Mathematics is the background of every 

engineering fields. Together with physics, 

mathematics has helped engineering develop. 

Without it, engineering cannot evolved so fast 

we can see today. Without mathematics, 

engineering cannot become so fascinating as it 

is now. Linear algebra, calculus, statistics, 

differential equations and numerical analysis 

are taught as they are important to understand 

many engineering subjects such as fluid 

mechanics, heat transfer, electric circuits and 

mechanics of materials to name a few. 

However, there are many complaints from the 

students who find it difficult to relate 

mathematics to engineering. After studying 

differential equations, they are expected to be 

able to apply them to solve problems in heat 

transfer, for example. However, the truth is 

different. For many students, applying 

mathematics to engineering problems seems to 

be very difficult. Many examples of engineering 

applications provided in mathematics textbooks 

are often too simple and have assumptions that 

are not realistic. See([8],[9],[10],[11]) for a good 

textbook which discusses mathematical 

modelling with real life applications. A lot of 

problems solved using Maple and MATLAB are 

given in [12,13,14]. The purpose of this paper 

is to show some applications of mathematics to 

various engineering fields. The applications 

discussed do not need advanced mathematics 

so they can be understood easily.  

 

2. Mathematical Approach to Engineering 

Problems 

In this section we discussed four engineering 

problems,  first problem is about electrical 

circuit  problem, the second on the mixing 

solutions in two tanks ,  Optimization Problem 

and the last on the stability problem . 

 

2. 1. Electrical circuit  

To find the current in the RC-circuit in Figure1.  

If a single rectangular wave with voltage is 

applied as a input . The circuit is assumed to 

be quiescent before the wave is applied. The 

input  in terms of unit step function is given by  

     0v t V u t a u t b     
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Figure.1  RC-circuit with input   v t  

 

Applying KVL to above circuit, we get 

       0

0

1
t

Ri t i d V u t a u t b
C

                                      (1.1) 

Taking Laplace transform, we get 

 
 

0

1 as bsI s e e
R I s V

C s s s

  
   

 
                                  (1.2) 

  0

1 as bse e
R I s V

sC s s

   
     

   
                           (1.3) 

  0

1 1

as bsV e e
I s

R
s s

RC RC

 

 
 
  
             

            (1.4) 

Taking  inverse Laplace transform, we get 

 
 

 
 

 
1 1

0
t a t b u

RC RC
V

i t e u t a e u t b
R

    
    

 
                        (1.5) 

is the required  current in the RC-circuit. 

 
 

2.2. Mixing Problem Involving Two 
Tanks 
 

Tank in Figure.2 initially contains 100 gal 
of pure water. Tank initially contains 100 gal 
of water in which 150 lb of salt are dissolved. 
The inflow into is from and containing 6 lb of 
salt from the outside. The inflow into is 8 
gal/min from. The outflow from is, as shown 
in the figure. The mixtures are kept uniform 
by stirring. Our aim is find the salt contents 

 1x t  and  2x t  in  tanks  T1  and T2.  

2.3. Optimization Problem 
(Minimization of  drag-to-lift ratio) 

 

Airplane pilots share a challenge with 
flying birds: How far can they go. What is 
their range for a fixed amount of fuel? Still 
better, can they maximize their range? It 
turns out that for a given amount of fuel, the 
speed that maximizes the range is the one 
that maximizes the aerodynamic quantity, 
called the lift-to-drag ratio, or, conversely, 
minimizes its inverse, the drag-to-lift ratio. 
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Figure.2  Mixing Problem Involving Two Tanks 

 
Setting up the model.  
 

     / min  -  / minTime rate of change Inflow Outflow  

For tank 
1T :        '

1 2 1

2 8
6

100 100
x t x t x t                (2.1)  

For tank 
2T :        '

2 2 1

8 2

100 100
x t x t x t            (2.2) 

with initial conditions are    1 20 0, 0 150x x  .  
 

By taking the Laplace transform we get 

     1 2

6
0.08 0.02s L x t L x t

s
                               (2.3) 

 

     1 20.08 0.08 150L x t L x t                    (2.4) 

We solve this algebraically for    1 2L x t and L x t        and we write the solutions in terms of partial 

fractions, 

 
      

1

9 0.48 100 62.5 37.5

0.12 0.04 0.12 0.04

s
L x t

s s s s s s


          

        (2.5) 

 

 
      

2

2

150 12 0.48 100 125 75

0.12 0.04 0.12 0.04

s s
L x t

s s s s s s

 
          

        (2.6) 

By taking the inverse transform we arrive at the solution 

   0.12 0.04

1 100 62.5 37.5t tx t e e                   (2.7) 

  0.12 0.04

2 100 125 75t tx t e e                   (2.8) 

are the required   salt contents  in  T1  and T2 

 

Figure. 3  a  typical jet with a free-body 

diagram superposed. The plane is climbing at 

an angle, α, at a speed, V, relative to the 

ground. The climb or flight direction angle, α, 

is zero for level flight, and positive for 

ascending flight and negative for descending 

flight. The free-body diagram shows the 

forces that act to support the plane and move 

it forward, as described in the aerodynamic  

 

literature. The plane’s weight, W, is 

supported by a lift (force), L, that is 

perpendicular to the flight path. The engines 

provide a thrust, T, that moves the plane 

along the flight path by overcoming the drag 

(force), D, that also acts along the flight path, 

albeit it in a direction that retards flight. The 

plane’s wing has a surface area, S, and 

span, b. 
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Figure. 3. A typical jet with a superposed free-body diagram showing the aerodynamic  
                 forces acting. 
 
Lift force  and drag force  is given by 
 

21

2
LL SV C     (3.1) 

 
And  
 

21

2
DD SV C      (3.2) 

 
where CL and CD are the corresponding lift and 
drag coefficients. (We should note that the 
drag-velocity relation is more complicated when 
planes fly closer to the speed of sound, due to 
drag produced by compressibility effects either 
on rapidly rotating propellers or on the wings of 
jet aircraft). The makeup of the CL and CD 

coefficients and their relationship provide, the 
complexity we will see in our search for an 
optimum flight speed. But first we need to do a 
little equilibrium analysis because taken 
superficially, equations. (3.1–3.2) suggest that 
the drag-to-lift ratio L/D is independent of the 
speed V, so how could it be minimized with 

respect to V? 
We sum the forces superposed on the plane in  

Figure . 3  in the x and y directions: 

 

cos sin cos 0xF T L D          (3.3) 

 
And 
 

sin cos sin 0tF T L D W         (3.4) 

 
If the climb angle, α, is assumed to be small,  

 
Using the approximations  

3 2

sin ........ cos 1 ........
6 2

and
 

  
 

      
 

 
 equations (3.3-3.4) can be simplified and 
solved to show that the lift L is,  

21

W
L W


 


           (3.5) 

which means that the drag-to-lift ratio is simply 

D D

L W
                         (3.6) 

 
 Equation(3.5) clearly shows that the lift force 
supports the plane’s weight, while equation 
(3.6) provides a speed-dependent ratio of the 
drag force to the weight. Now we return to the 
drag coefficients because that is the logical 
step for casting the D/L ratio in terms of the 
plane’s speed, V. 
It turns out that the drag coefficient is 
expressed as a sum of two terms, 

0

2

2
.L

D D

kSC
C C

b
               (3.7) 

 

The first term represents the parasite or friction 
drag caused by shear stresses resulting from 
the air speeding over and separating from the 
wing. The second term is the induced drag : it 
is independent of the air viscosity and is 
created by wings of finite span (i.e., real wings!) 
because of momentum changes needed to 
produce lift, according to Newton’s second law. 
Note that the induced drag is proportional to 

the square of the lift coefficient, 2

LC .  

Http://escipub.com/american-journal-of-computer-sciences-and-applications/        0005



Gangadharaiah, Y. H , AJCSA, 2017; 1:3 

Now we can combine equations. (3.1) and (3.6) 
to write the drag-to-lift ratio as 
 

2

2

DSV CD

L W


             (3.8) 

after which we can further combine. equations. 
(3.1), (3.5)   and (3.7)  to rewrite (3.5)  . (3.8) as  

2 2

01 02

D
C V C V

L

           (3.9) 

  With the constants  01 02C and C  defined as  

0

01 02 2

2
,

2

DSC kW
C C

W b




            (3.10) 

Thus, the objective function or cost for this 
optimization problem is defined in equations. 
(3.9), and its coefficients as presented in 
equation (3.10) are simply constants reflecting 
the values of the problem’s physical parameters: 

ρ,  S, W, the wing span, b, the parasite drag 

coefficient, 0DC  and a dimensionless shape 

constant, k . 

The extreme value of this unconstrained 
optimization problem is then found by the 
standard calculus approach, that is, 
 

3

01 022 2 0
d D

C V C V
dV L

 
   

 
     (3.11) 

 
which has the following extreme value: 
 

1
4

02

01 02 min

min 01

2 2 .
CD

C C at V
L C

  
         

(3.12) 

 
With the aid of equation (3.10), the minimum 
drag-to-lift ratio can then be written in its final  
form  
 

0

2

min

2
DkSCD

L b

 
 

 
               (3.13) 

 

This is a classical result in aerodynamics. 
Further, it is also easily demonstrated at this 
minimum D/L ratio occurs only when the 
parasite drag and the induced drag are equal 
and, consequently, independent of the plane 
weight W. 
 

2.4. Stability Problem 

 Many smaller portable tape recorders have a 
capacitor microphone built in, since such a 
system is simple and robust. It works on the 

principle that if the distance between the plates 
of a capacitor changes then the capacitance 
changes in a known manner, and these 
changes induce a current in an electric circuit. 
This current can then be amplified or stored. 
The basic system is illustrated in Figure.4 
There is a small air gap (about 0.02 mm) 
between the moving diaphragm and the fixed 
plate. Sound waves falling on the diaphragm 
cause vibrations and small variations in the 
capacitance C ; these are certainly sufficiently 
small that the equations can be linearized. 

.  

Figure.4  Capacitor microphone 
 

We assume that the diaphragm has mass m 

and moves as a single unit so that its motion is 
one-dimensional. The housing of the 
diaphragm is modelled as a spring and-dashpot 
system. The plates are connected through a 
simple circuit containing a resistance and an 
imposed steady voltage from a battery. Figure 
illustrates the model. The distance x (t) is 
measured from the position of zero spring 
tension, F is the imposed force and f is the 
force required to hold the moving plate in 
position against the electrical attraction. 
 
The mechanical motion is governed by 
Newton’s equation 
 

2

2
0

d x dx
m x f F

dt dt
        (4.1) 

 
and the electrical circuit equation gives 

q
E RI

C
      (4.2) 

The variation of capacitance C with x is given 
by the standard formula 

0C a
C

x a



    (4.3) 
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Figure.5  Capacitor microphone model. 
 
where a is the equilibrium distance between the 
plates. The force f is not so obvious, 

2

0

1

2

q
f

C a
      (4.4) 

It is convenient to write the equations in the 
first-order form 

dx
v

dt
       (4.5) 

0
dv

m v x f F
dt

        (4.6) 

 

0

q a xdq
R E

dt C a


      (4.7) 

 
Furthermore, it is convenient to non-
dimensionalize the equations. With distance 
and velocity, for the time and the charge using 
standard non-dimensionalization procedure  by  
neglecting  prime,   

2
1 0

, , ,
2

ka

t x v q
X V Q

a C ka




     

 
And equations are 
 

' 0RC k
X V


     (4.8) 

' 2

0

R F
V X V Q

C m ka
      (4.9) 

 ' 0

2

0

1
2

EC
Q Q X

C ka
        (4.10) 

There are four non-dimensional parameters: 
the external force divided by the spring force 
gives the first, G = F/ka ; the electrical force 
divided by the spring force gives the second, 

2 2
2 0

2

02

E C
D

C ka
 ; and the remaining two are 

0RC
A


  and 

0

R
B

C m
  

 

The final equations are 
 

 ' ' 2 ', 1X A V B V X V Q G and Q Q X D               (4.11) 

 
In equilibrium, with no driving force, G = 0 and 

' ' ' 0V X V Q    , so that 
 

 
 

2 0

1

Q X

Q X D

  


   

    (4.12) 

on eliminating Q,  weget 
 

 
2 21X X D       (4.13) 

 
 
 
There are two physically satisfactory 

equilibrium solutions 
1

0
3

X  
 and 

1
1

3
X   

 , 
and the only question left is whether they are 
stable or unstable. Using standard stability 
analysis  
Get  the only solution that can possibly be 

stable is the one for which 
1

3
X        and  other 

solution is unstable.   
Having established the stability of one of the 
positions of the capacitor diaphragm, the next 
step is to look at the response of the 
microphone to various inputs. The 
characteristics can most easily be checked by 
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looking at the frequency response, which is the 
system response to an individual input G = b 

jwte  as the frequency ω varies. This will give 

information of how the electrical output 
behaves and for which range of frequencies the 
response is reasonably flat. The essential point 
of this example is to show that a practical 
vibrational problem gives a stability problem. 

3. Conclusions  
In this paper, four of applications of 
mathematics for different engineering fields 
have been presented. The problems are from 
real life and solved different techniques. It is 
expected that the problems presented in this 
paper can motivate  reader to understand 
mathematics better. Mathematics should be 
enjoyable as it has helped engineering evolved. 

 
References 
 
[1] Gere, J.M. and Timoshenko, S.P., 

Mechanics of Materials, Third SI Edition. 
Dordercht: Springer Science Business 
Media, 1991.  

[2] Popov, E., Engineering Mechanics of Solids. 
New Jersey: Prentice-Hall, 1990.  

[3] J. E. Connor, J.E. and and Faraji, S., 
Fundamentals of Structural Engineering. 
Berlin Heidelberg: Springer-Verlag, 2012.  

[4] Hjelmstad, K.D., Fundamentals of Structural 
Mechanics, Second Edition. New York: 
Springer-Verlag, 2005.  

[5] White, R.E. and and Subramaniam, V.R., 
Computational Methods in Chemical 
Engineering with Maple. Springer-Verlag. 
Berlin Heidelberg, 2010. 

[6] Keil, F., Mackens, W., Vo, H. And Werther, 
J., Scientific Computing in Chemical 
Engineering. Springer-Verlag, Berlin 
Heidelberg, 1996.  

[7] Caldwell, J. and Ram, Y.M., Mathematical 
Modelling, Springer Science Business 
Media. Dordercht, 1999.  

[8] Braun, M., Differential Equations and Their 
Applications, Springer Science Business 
Media. New York, 1993.  

[9]  Erwin Kreyszing.,  Advanced Engineering 
Mathematics : John Wiley & Sons, 2014.  

[10] Glyn James., Advanced  Modern 
Engineering Mathematics: Pearson 
Education Limited,  2011.  

 

 
[11] Popov, E., Engineering Mechanics of 

Solids. New Jersey: Prentice-Hall, 1990.  
[12] Jacobsen, R.T., Penoncelo, S.G. and 

Lemmon, E.W., Thermodynamic Properties 
of Cryogenic Fluids. Springer Science 
Business Media, New York, 1997.  

[13] Reid, R.C., Prausnitz, J.M. and Poling, 
B.E., The Properties of Gases and Fluids. 
McGraw-Hill Inc., New York, 1987.  

[14] Gander, W. And Hrebicek, J., Solving 
Problems in Scientific Computing Using 
Maple and         MATLAB. Springer-Verlag, 
Berlin Heidelberg, 2014 

[15] K. M. Heal, M. L. Hansen, and K. M. 
Rickard, Maple V Learning Guide. Springer-
Verlag, New York, 1998. 

[16] R. M. Corless, Essential Maple, , Springer-
Verlag, New York, 1995. 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Http://escipub.com/american-journal-of-computer-sciences-and-applications/        0008



Gangadharaiah, Y. H , AJCSA, 2017; 1:3 

Appendix 
Properties of Laplace Transform: 

 
some of the important properties of Laplace transform which will be used in its applications are 
discussed below. 

1. Definition of a Laplace Transform  F(s) L f t   f t 
0



  e
st
dt   and     tfsFL 1  

2  Linearity:  The Laplace transform of the sum, or difference, of two signals  in time domain  is 
equal to the sum, or difference, of the transforms of each signals, that is, 

 

       1 2 1 2L C f t C g t C L f t C L g t              

3. Differentiation:  If the function  f t  is piecewise continuous so that it has continuous  

derivative  1nf t
 of order 1n   and a  sectionally  continuous derivative  nf t in every finite 

interval  0, , then           1 2 10 0 0n n n nL f t s L f t s f s f f           

 

3. Integration:     
 

0

t F s
L f t dt

s

 
 

 
  

4.   Laplace transform of   Unit step signal  
a se

L u t a
s



     

5.   Second shifting theorem:      asL f t a u t a e L f t          
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