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Evaluation of Seasonal Streamflow Forecasting 

Long-term streamflow forecasts are essential for optimal 
management of water resources for various demands, including 
irrigation, fisheries management, hydropower production and 
flood warning. In this paper, a probabilistic forecast framework 
based on Ensemble Streamflow Prediction (ESP) technique 
is presented, with the basic assumption that future weather 
patterns will reflect those experienced historically. Hence, past 
forcing data (input to hydrological model) can be used with the 
current initial condition of a catchment to generate an ensemble 
of flow predictions. The present study employs the ESP-based 
approach using the TopNet hydrological model. The objective of 
this present paper is to evaluate and assess the uncertainty due 
to initial condition of the catchments and forcing (meteorological 
input to the model)  data for  (ESP) based streamf low 
forecasting using the TopNet hydrological model in New 
Zealand catchments.  An ensemble of streamflow predictions 
which provide probabilistic hydrological forecasts, reflecting 
the intrinsic uncertainty in climate, with lead time up to three 
months is presented for the four catchments on New Zealand’s 
South Island. Verification of the forecast over the period 2000-
2010 indicates a Ranked Probability Skill Score of 23% to 
69% (over climatology) across the four catchments. In general, 
improvement in ESP forecasting skill over climatology is greatest 
in summer for all catchments studied. The major uncertainty 
associated with ESP forecast is combination of uncertainty due 
to initial state and climate forcing. The analysis indicates that the 
sensitivity of flow forecast to initial condition uncertainty depends 
on the hydrological regime experienced by the basin during the 
forecast period. On average, the relative importance of initial 
condition is greatest within two weeks to months of the start of 
the simulation for all catchment and all season. After this time 
period uncertainty in forecast is mainly due to uncertainty in 
forcing data. Finding of this study can be valuable tool for water 
resource managements.

Shailesh Kumar Singh
National Institute of Water and Atmospheric Research, Christchurch, New Zealand
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NTRODUCTION  

Streamflow forecasts are essential for optimal 

allocation of water supplies for various demands 

that include irrigation for agriculture, habitat for 

fisheries, hydropower production and flood 

warning. A long-range forecast is essential for 

any water resource planning because long-

range/seasonal streamflow forecast can help 

water manager for optimal management of water 

resources and allow them to take timely decision 

to assesses the risk of alternative water use and 

management strategies (Robertson et al., 2013).   

Common approaches to seasonal-to-interannual 

(long-term) streamflow forecasting include 

simple statistical methods(Garen, 1992; 

Piechota et al., 1998; Svensson, 2016) (e.g. 

using regression equations to predict seasonal 

streamflow via observations of snowpack and 

precipitation) or Ensemble Streamflow 

Prediction (ESP) techniques (Chen and 

Brissette, 2015; Day, 1985; Singh, 2016; Wood 

and Lettenmaier, 2008) using empirically or 

physically based hydrologic model simulations 

initialized by estimates of state variables such as 

snowpack or soil moisture. Although approaches 

using regression equations are relatively 

inexpensive to implement and maintain, and 

have been demonstrated to perform well in 

settings where snow is major component of the 

hydrologic cycle, there are several reasons to 

prefer more sophisticated approaches that use 

hydrologic simulation models.  Perhaps the most 

compelling of these relates to concerns about 

parameter stationarity during extreme events 

(e.g. due to changing baseflow conditions during 

long droughts) or in the context of climate 

change.  The ESP approach also provides 

explicit spatial information about the initial 

hydrologic state (e.g. maps of snowpack or soil 

moisture anomalies), it directly simulates an 

ensemble of streamflow time series which can 

be fed into planning models at a range of time 

scales, and it quantifies a wider range of 

uncertainties in the forecasts (e.g. related to both 

volume and timing) in a more direct and easily 

interpreted manner than statistical forecasts.  

The usefulness of regression based approaches 

in New Zealand is also limited by the lack of a 

comprehensive snowpack monitoring system 

(Hendrikx et al., 2009).  This limitation is not as 

important when employing ESP approaches, 

because the hydrologic models themselves can 

be used to simulate the hydrologic state 

variables using observed temperature and 

precipitation data as the inputs. For these 

reasons, we have elected to explore the 

performance of an ESP forecasting system in 

this paper, rather than regression based 

approaches. 

Several small-scale streamflow forecasting 

systems have been implemented in individual 

river basins at various times in New Zealand 

(e.g. Purdie and Bardsley (2010)), and a more 

comprehensive, qualitative system based 

primarily on precipitation monitoring and review 

by a panel of experts is currently used to 

estimate streamflow for the coming year in a 

number of rivers (NIWA, 2016). These existing 

approaches notwithstanding, New Zealand 

currently does not have a centralized, 

comprehensive, and state-of-the-art seasonal-

to-interannual streamflow forecasting system in 

place to support water management decisions. 

A number of fundamental research tasks must 

be carried out before such a system can be 

designed and implemented including: hydrologic 

model development and implementation, 

preparation of historical meteorological data 

sets, model calibration for individual river basins, 

evaluation of the importance of various forecast 

and/or observed physical drivers that inform the 

forecasts (such as future precipitation and 

temperature, soil moisture, snowpack, El Nino 

Southern Oscillation (ENSO), etc.), design and 

implementation of monitoring systems to support 

forecasts, and retrospective evaluation of 

hindcasts of historical streamflows at various 

lead times and times of year to determine the 

error characteristics and appropriate times of 

year for the forecasts.  

As an exploratory study, we have elected to 

implement and evaluate in detail an 



Shailesh Kumar Singh, AJGRR, 2018; 1:4 

AJGRR: http://escipub.com/american-journal-of-geographical-research-and-reviews/      0003

experimental Ensemble Streamflow Prediction 

forecasting system over two specific river basins 

on the South Island of New Zealand (Figure 1). 

In the Upper Waitaiki basin our study will focus 

on the Ahuriri, Hooker and Jollie catchments, 

while the Rangitata River basin is modeled as a 

whole.  These rivers were chosen for two 

reasons: a) both have good quality observed 

streamflow and snowpack information over a 

long-time period to support hydrologic modeling 

efforts and b) skillful forecasting systems would 

benefit water resources management 

applications (hydropower production and 

marketing, and irrigation respectively). Also New 

Zealand’s National Institute of Water and 

Atmospheric Research (NIWA) has easy access 

to  hydrologic information and data for the 

Waitaki and Rangitata basins from past field 

campaigns (Clark et al., 2011) and previous 

application of snow/rainfall - flow models (e.g. 

Woods (2009)).  

The objective of this study is to evaluate and 

asses forecasting uncertainty due to initial 

condition of the catchments and forcing 

(meteorological input to the model) data for ESP-

based streamflow forecasts using the TopNet 

hydrological model in New Zealand catchments. 

The approach taken here is to run TopNet 

hydrological models with 38 years of historical 

climate forcing data and current initial Conditions 

(ICs). From the collection of model runs (the 

ensemble), probability distributions can be 

derived to produce probabilistic flow forecasts, 

capturing the intrinsic uncertainty in weather or 

climate. An ESP-based hydrological forecast 

with lead time up to three months is presented 

here as the relative importance of initial state 

variables (such as soil moisture and snowpack) 

and future precipitation and temperature as 

fundamental drivers of uncertainties in forecasts 

are evaluated for different seasons for selected 

rivers in South Island of New Zealand. 

METHODOLOGY  

ESP based forecasting Technique 

The ESP forecast technique assumes that 

meteorological events that occurred in the past 

are representative of events that may occur in 

the future. In ESP forecasting, an ensemble of 

potential future flow records is simulated to 

create a range of possible flow scenarios (Day, 

1985; Wood and Lettenmaier, 2008). The basic 

assumption of the ESP forecast is that historical 

meteorological data like precipitation and 

temperature in an area are reasonable 

representation of conditions which might be 

expected to reoccur in that area in the future. An 

additional assumption is that  hydrological 

process occurring in the area can be accurately 

represented by a hydrological model (Twedt et 

al., 1978; Wood and Schaake, 2008). In an ESP 

forecast system, the hydrologic model is used to 

first simulate real-time flow conditions up to the 

date and time of the forecast. The pre-forecast 

period simulation is driven by near recent and 

real-time climate input data. A minimum of one 

year of pre-forecast simulation is recommended 

to get the representative initial condition of a 

catchment at the time of the forecast. The 

hydrologic model is then run numerous times to 

create a set of possible flow records of the 

forecast period. All the simulated flow records (or 

traces) have the same simulation starting and 

ending dates that span the forecast period. The 

traces are created using the same real-time 

initial conditions, which include snow, soil 

moisture, and flow on the day of the forecast. 

However, each trace is simulated using climate 

input data from a different year in the historical 

record. Applying weather for different years to 

the present conditions allows extremes of 

weather in the region at this time of the year to 

be captured. The resulting traces give an idea of 

the range of possible flows.  Once several 

scenario hydrographs are calculated, the results 

can be used to generate probabilistic streamflow 

values.  

The ESP forecast can be summarised as follow. 

1. Calibrate the hydrological model on 

observed data 

2. Run the hydrological model up to the 

forecast date using current climatic data 

and store the initial state of the catchment 
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Table 1 TopNet model parameters which need calibration, description and allowed range for the 

parameter multiplier 

Parameter 

  

Description 

  

Initial 

Min Max 

topmodf TOPMODEL f parameter (m-1) 0.001 2 

hydcon0 Saturated hydraulic conductivity (ms-1) 0.01 9999 

swater1 Drainable water(m) 0.05 20 

swater2 Plant-available water(m) 0.05 20 

dthetat Soil water content(m) 0.1 10 

overvel Overland flow velocity (ms-1) 0.1 10 

gucatch Gauge under-catch for snowfall(-) 0.5 1.5 

th_accm Threshold for snow accumulation(K) 272.16 275.16 

th_melt Threshold for snow melt (K) 272.16 275.16 

snowddf 
Mean degree-day factor for snow melt (mm K-1 day-1 

= kg m-2 K-1 day-1) 0.1 7.5 

minddfd Minimum degree-day-factor day (julian day: 1 to 366) 1 366 

maxddfd Maximum degree-day-factor day (julian day: 1 to 366) 1 366 

snowamp 
Seasonal amplitude of degree-day factor for snow 

melt (mm K-1 day-1 = kg m-2 K-1 day-1) 0 7.5 

cv_snow Coefficient of variation in sub-grid SWE(-) 0.5 1.5 

r_man_n Manning's n(-) 0.1 10 

 

 

 

Table 2 Modeled high, medium and low flow years for the different catchments 

 

  Rangitata Ahuriri Jollie Hooker 

high 1983 1983 1983 1998 

medium 1987 1999 1996 1993 

low 1985 1989 1989 1985 
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3. Select historical meteorological data for 

the same season of the forecast is 

required.   

4. Run the hydrological model using the 

current initial condition and different 

historical years forcing data selected in 

Step 2 for the forecast season. 

5. Make probabilistic forecast from the 

ensemble member from Step 3. 

6. Make different probabilistic forecast 

products.  

7. Verify the forecast and report the skill of 

the forecast.  

As ESP forecasts use current initial conditions 

and forcing from observed meteorological data 

in past years (Day, 1985),  streamflow forecast 

uncertainty is due to errors in specifying 

hydrologic initial conditions (i.e. soil moisture, 

depth to groundwater, state of the snow pack),  

meteorological (temperature and precipitation) 

forcing errors and internal model structural 

errors (Wood and Schaake, 2008). 

Forecast Verification  

Streamflow forecasts cannot be used in full 

confidence without a proper verification. ESP 

verification is intended to give an indication of 

the quality of the basin calibration and resulting 

predictive ability. However due to the 

probabilistic nature of ESP forecasts, verification 

is a difficult task as compared to deterministic 

forecast. Verification of deterministic forecasts is 

done by judging how well the forecast matches 

the observed streamflow for an event. 

Comparing the mean of ESP forecasts with 

observed discharge cannot be a robust test for 

the verification of the forecast.  Probabilistic 

(ESP) forecasts provide a forecast distribution 

and do not have a single value against which to 

compare the observed streamflow. As a result, 

ESP verification is performed with respect to 

climatology and observed discharge. 

Climatology forecasts were generated from the 

historical observed flow over the evaluation 

periods. 

To avoid including a “perfect” forecast of 

observed meteorological driving data, the 

ensemble member associated with the observed 

water year is excluded from the ensemble (i.e. 

37 ensemble members are available for each 

retrospective forecast date and lead time). 

Ranked Probability Score (RPS) can be used to 

determine how well the probability forecast 

predicted the category that the observations fell 

into (Epstein, 1969; Murphy, 1969). Relative 

performance of the forecast over baseline (i.e. 

climatology) is determined using Ranked 

Probability Skill Score (RPSS).  

 The Ranked Probability Score and Ranked 

Probability Skill Score is given by following 

equation 

 

𝑅𝑃𝑆 =  ∑ [𝑃(𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 < 𝑖) − 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 <𝑛
𝑖=1

𝑖)]2              (1) 

𝑅𝑃𝑆𝑆 = 1 −
𝑅𝑃𝑆

𝑅𝑃𝑆𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦
                        (2)  

Where P (forecast) is the forecast exceedance 

probability and P (observed) is the observed 

exceedance probability.  RPS is bounded by 0 

and 1 and a score of zero indicates a perfect 

forecast. Whereas RPSS is bound by - ∞ to 1, 

with 0 means no skill compare to climatology.  

Evaluating the importance of initial state 

and forcing (meteorological Input to model) 

data on streamflow forecast 

Uncertainty in ESP forecasts is due to errors in 

specifying hydrologic initial conditions (i.e. soil 

moisture, depth to groundwater, state of the 

snow pack), meteorological (temperature and 

precipitation) forcing errors and internal model 

structural errors (Wood and Schaake, 2008). As 

a result, the initial state of a basin may have a 

pronounced effect on model discharge in the 

following time steps.  

In order to estimate the importance of errors in 

hydrologic initial conditions as sources of 

streamflow forecast uncertainty, initial conditions 

are varied at the beginning of the period of 

simulation (termed as reverse ESP) for each 

catchment. As a result, an ensemble of 

streamflow time series is created for a specific 

starting month, based on the ensemble of initial 
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conditions modelled at the start of that particular 

month. The uncertainty in streamflow forecasts 

due to error in initial conditions is estimated with 

seasonal ensemble spread, which is defined as 

follows. First, the normalized forecast anomaly 

for ensemble member i is:   

𝑀𝑆(𝑖) = ∑
(𝑄𝑠𝑖𝑚−𝑄𝑒𝑛𝑠(𝑖))

∑ 𝑄𝑠𝑖𝑚𝑜𝑣𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛
𝑜𝑣𝑒𝑟 𝑠𝑒𝑎𝑠𝑜𝑛                     

(1) 

Where, MS is measure of spread. Qsim is the 

modeled discharge for a given time period, Qens(i) 

is streamflow corresponding to ensemble 

member i. We have defined this anomaly in 

terms of the total flow over a season, but it would 

be possible to use other measures of anomaly, 

if the interest was in forecasting high flows, or 

low flows, rather than the total flow in the 

season. The standard deviation of the MS values 

over one ensemble is a measure of the seasonal 

ensemble spread. If the spread in MS is large, 

then the forecast is sensitive to initial conditions 

and if the spread in MS is small then the forecast 

is not sensitive to initial conditions.  

In order to estimate the importance of errors in 

meteorological (temperature and precipitation) 

forcing as sources of streamflow forecast 

uncertainty, the hydrological model was run with 

a range of past forcing data with current initial 

conditions for period of simulation for each 

catchment. The standard deviation of the MS 

was used to measure the spread of the 

ensemble. 

Using ESP, we can evaluate the relative effect 

of future precipitation and temperature 

uncertainties on the streamflow forecast. While 

using Reverse ESP (different initial condition but 

same forcing data) we can examine the relative 

effects of the initial state conditions on the future 

streamflow forecasts. The spread of ESP and 

reverse ESP is used as measure of uncertainty. 

The wider the spread (higher the standard 

deviation of MS) more the uncertainty. For the 

sake of simplicity, the results will be presented 

for high, medium and low flow years for all 

catchments. 

STUDY AREA AND MODEL 

Study Area 

The four catchments selected for this study were 

Rangitata (1469 km2), Hooker (105 km2), Jollie 

(141 km2), and Ahuriri (568 km2) located in South 

Island, New Zealand (Fig. 1).  Catchment areas 

range from 100 to 1500 km2. The catchments 

are similar in topography, land cover and 

climate, as they are all on leeward side of the 

Southern Alps. However, they span a range of 

distances from the main divide and rainfall 

shadow affects their precipitation and snow 

water storage to varying degrees. The mean 

annual precipitation varies across the 

catchments from 1.77 m (Ahuriri) to 8.57 m 

(Hooker) as well, flow generation processes 

differ for these catchments. Rangitata and 

Ahuriri are rainfall dominated catchments, 

whereas Jollie and Hooker are snow dominated. 

The mean annual runoff ranges from 8 m3/s to 

98 m3/s.  

Meteorological Driving Data 

Topographically adjusted, daily time step, 0.05 

degree latitude/longitude (~5km resolution) 

operational gridded meteorological data (daily 

precipitation and maximum, minimum 

temperature, and daily potential 

evapotranspiration) were extracted from the 

Virtual Climate Network (VCN) of National 

Institute of Water and Atmospheric Research 

(NIWA) over the period 1972-2010  (Tait et al., 

2006; Tait and Woods, 2007).  Because the sub-

basin elements in the hydrological model have 

about the same resolution as the gridded 

meteorological data set and that the 

interpolation process used to create the gridded 

meteorological product tends to spatially smooth 

the data, a simple nearest-neighbour re-gridding 

approach is used to produce driving data for 

each sub-basin element in the hydrological 

model.  Although the driving data are input to the 

hydrologic models at daily time step, the 

hydrological model internally disaggregates the 

data to hourly time step (Clark et al. 2008).  The 

physical catchments characteristics was derived 

from River Environment Classification (REC) 
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Figure 1 The location of four selected catchments 

 

Figure 2 Systematic Representation of TopNet model structure (Singh and Dutta, 2017) 
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river network (Snelder and Biggs, 2002), the 

lithology and soil drainage from “New Zealand 

Land Resource Inventory” (NZLRI) (Newsome et 

al., 2000), The land use grid was derived from 

the New Zealand Land Cover Database (S. 

Thompson, 2003). 

Model 

TopNet is a semi-distributed hydrological model 

which simulates catchment water balance and 

river flow. It was developed using the 

TOPMODEL (Beven and Kirkby, 1979) concepts 

for parameterization of soil moisture deficit using 

a topographic index to model the dynamics of 

variable source areas contributing to saturation 

excess runoff (Bandaragoda et al., 2004; Beven 

and Kirkby, 1979). TopNet models a catchment 

as a collection of sub-watersheds, linked by a 

branched river network (Clark et al., 2008). Flow 

is routed through the river network using 

kinematic waves using the shock-fitting 

technique of Goring (1994). Modelled 

streamflow is generated in 3 ways:  

• rain falls on a location where soil water 

storage equals its capacity (Saturation 

excess runoff')  

• rain rate exceeds infiltration rate 

('Hortonian runoff')  

• saturated zone discharge into stream 

(baseflow) 

TopNet assumes that available soil water 

storage can vary within a sub-watershed 

because of topographic effects - valley bottoms 

and flat places are wetter than ridges.  TopNet 

provides a prediction of flow in each modelled 

reach within a catchment (Bandaragoda et al., 

2004; Clark et al., 2008; Ibbitt et al., 2000). The 

model inputs are rainfall and temperature time 

series (e.g at hourly time steps, with rain from 

one or more locations), relative humidity, solar 

radiation, and maps of elevation, vegetation 

type, soil type and rainfall patterns. These map 

data are used with tables of model parameters 

for each soil and vegetation type, to produce 

initial estimates of the model parameters. A 

schematic representation of the model is given 

in Figure 2. TopNet has 31 parameters to define 

the hydrological processes of a catchment. 

Where possible, parameter values are 

determined from physical catchment properties; 

however, 15 parameters (Table 1) typically 

require calibration. During calibration, TopNet 

model uses a spatially constant multiplier for 

each parameter, to adjust the parameters while 

retaining the relative spatial pattern obtained 

from the soil and vegetation data (Bandaragoda 

et al., 2004). This procedure is necessary to 

reduce the dimensionality of the calibration 

problem.  

RESULTS  

Hydrologic Model Calibration and 

Evaluation 

A TopNet model was calibrated for each river 

basin. Each TopNet model was calibrated at the 

most downstream gauging station in the 

catchment. The wetness index and flow distance 

distributions for each sub-basin are derived from 

a 30m digital elevation model (DEM) and the 

initial model parameters for each sub-basin are 

estimated using soil and vegetation maps. The 

spatial distribution of initial model parameters at 

the sub-basin scale is provided to the model 

before calibration (Bandaragoda et al., 2004).  

During calibration, TopNet model uses a 

multiplier for each parameter except the snow 

related parameters to adjust the parameters 

while retaining the relative spatial pattern 

obtained from the soil and vegetation data 

(Bandaragoda et al., 2004). The 15 parameters 

(seven soil related, seven snow related and one 

routing related) were calibrated over the time 

period 1998 to 2002  using the ROPE (RObust 

Parameter Estimation) algorithm (Bárdossy and 

Singh, 2008) using Log Nash-Sutcliffe 

coefficient as objective function. Model was 

validated over 2005-2008. Figure 3 shows the 

validation hydrographs for time periods 2005 to 

2008 for the Rangitata River basin. The TopNet 

model under-predicts some flood events and 

over predicts others, but the dynamics of the 

model seem acceptable. The analysis of the 

calibration results for the remaining catchments 
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Figure 3 Observed and modeled hydrographs for Rangitata at Klondyke for validation time period, 

with catchment-mean climate forcing da 

Figure 4 An example trace plot (top) and a probability plot (bottom) for Hooker catchment for forecast 

period March-May 2007 
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Figure 5 Sensitivity of initial condition on stream flow forecasting for low, medium and high water 

years for all the four season and all four catchments 

 

Figure 6 Relative importance of forcing data for different flow years for all the four catchments and 

seasons 
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provides similar conclusions and are not shown 

here.  

ESP forecast  

To test the flow forecasting performance of the 

ESP forecast for Rangitata, Ahuriri, Jollie and 

Hooker catchments, the forecast model was run 

in hindcast mode for year 2000 to 2010 for 

different season. Results from all the 

catchments were similar, hence, the results from 

the Hooker catchment are presented here. The 

hydrological model runs on monthly cycles, with 

a 3-months forecast produced at each cycle. The 

forcing meteorological data was used from 1972 

till date of the forecast. An example for an ESP 

based three month forecast for Hooker 

catchment is given in Figure 4. Verification of the 

forecast over the period 2000-2010 indicates a 

Ranked Probability Skill Score of 23% to 69% 

(over climatology) across the four catchments. In 

general, improvement in ESP forecasting skill 

over climatology is greatest in summer for all 

catchments studied. The ESP based forecast 

exhibited higher skill for a greater percentage of 

the forecasting period than climatology. 

Uncertainties due to state variable on 

streamflow forecast 

The relative importance of initial conditions as a 

source of uncertainty in hydrological 

predictability is different for each season of the 

year and each catchment. This uncertainty was 

access for low, medium and high water years 

(Table 2).  Figure 5 indicates the sensitivity of the 

streamflow forecast to initial conditions in terms 

of a standard deviation of MS for low, medium 

and high water years for all the four season and 

four catchments. The analysis indicates that the 

sensitivity of flow forecast to initial condition 

uncertainty depends on the hydrological regime 

that will be experienced by the basin during the 

seasonal forecast period.  

The maximum variation of flow due to initial state 

is associated with spring for the Rangitata, 

Ahuriri and Jollie catchments and winter for the 

Hooker catchment. At high flow water year, the 

initial conditions have much more impact during 

wet periods (summer and spring) as compared 

to medium and low flow water year.  Analysis 

across the different catchments study indicates 

that flow forecasts are sensitive to the estimation 

of the initial condition and this sensitivity is highly 

dependent of the catchment, hydrological 

regime and season. The forecasts are generally 

more sensitive to initial conditions during the first 

month. This leads to some uncertainty on the 

year to use for the initialization of the model.   

For the Rangitata catchment, initial conditions 

have less impact on forecast uncertainty in fall 

than in winter. Flow predictions for spring and 

summer seasons are the most sensitive to initial 

condition. In the Ahuriri catchment, during 

spring, winter and summer seasons there is 

more spread in ensemble flow, and hence 

uncertainty, due to initial conditions, while during 

fall the behaviour is similar to that of Rangitata. 

During high flow years, glaciated catchments 

(e.g. Hooker), the initial conditions have much 

more impact during summer and winter as 

compare to fall and spring.   

For high flow years, initial conditions are 

important to provide reasonable summer flow 

forecasts.  However, initial conditions seem to be 

unimportant for fall flow forecasts. This result is 

valid for both basins. The similarity behaviour of 

the two basins could be the result of the similar 

climatic conditions prevailing at the time.  

For medium flow years, initial conditions are 

important to provide reasonable summer flow 

forecasts and seem to be unimportant in term of 

fall flow forecast. Result valid for both basin and 

it is not related to the climate condition at the 

time as both basin is using different climatic 

sequence.  

For low flow years, initial conditions seem 

relatively unimportant to provide spring flow 

forecast across the basin. Reasonable 

estimates of initial condition are important for fall 

and summer flow forecast. Effect seems less 

important for winter in Rangitata but important 

for Ahuriri. The glaciated catchment, Hooker, 

does not have much effect of initial condition in 
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Figure 7 Variation during each forecast of the average relative spread from ESP and Reverse ESP 

for Rangitata, Ahuriri, Jollie, and Hooker catchments (top to bottom), for forecasts starting in Fall, 

Winter, Spring and Summer (left to right). In most cases, by two weeks into the forecast period, 

the ESP spread is larger than the reverse ESP spread. 
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summer. This may be due to effect of snow melt 

from the catchment during summer.   

Uncertainties due to forcing data on 

streamflow forecast 

In order to estimate the importance of error in 

hydrological forcing data, such as precipitation 

and temperature as a source of stream flow 

forecast uncertainty, ESP forecasts are 

prepared for each catchment.  As a result, an 

ensemble of flow forecasts is created for specific 

months, based on the ensemble of past forcing 

data.  Figure 6 shows the sensitivity of stream 

flow forecasts to forcing data as a standard 

deviation of MS for low, medium and high water 

year for all seasons and catchments. The 

analysis indicates that the sensitivity of flow 

forecast to forcing uncertainty depends on the 

hydrological regime that will be experienced by 

the basin during the seasonal forecast period. 

Ensemble spread due to uncertainty in forcing 

data tends to be lower in years with higher flow 

than the medium and lower flow years in all 

catchments and seasons. The average 

ensemble spread due to uncertainty in forcing 

data is higher in Ahuriri catchment for all the 

seasons and flow conditions. 

For high flow years, the uncertainty in forcing 

data tends to be equal for all the catchments and 

all four seasons. Although, the Hooker 

catchment exhibits greater forcing uncertainty in 

in winter and spring.   

For medium flow years, the uncertainty in forcing 

data tends to be variable. Hooker catchment 

have greater influence in springs and Fall where 

as Ahuriri has greater effect in summer. 

For low flow year, the uncertainty in forcing data 

tends to have less effect during winter and spring 

seasons than summer and fall.   

Relative importance of state variable and 

forcing data on streamflow forecast 

To evaluate the relative importance of hydrologic 

initial condition errors and climate forcing errors 

as sources of seasonal runoff forecast 

uncertainty, we use a framework described by 

previous studies (Paiva et al., 2012; Wood and 

Lettenmaier, 2008).  Ensembles of forecasts 

generated with identical climate forcing data and 

a range of initial conditions are termed reverse 

ESP, whereas ESP is an ensemble of forecasts 

where uncertainty is due to forcing data. (Paiva 

et al., 2012; Wood and Lettenmaier, 2008) used 

climatological variance to evaluate the relative 

spread. The relative spread is calculated as ratio 

of MS of ESP or Reverse ESP to MS of 

climatology. Although effects of initial conditions 

are found in all of the catchments, results show 

to be different for each catchment and for each 

season. The uncertainty associated with initial 

condition appears to be more important for wet 

periods. The spread of the ESP ensemble is 

higher for springs than others. On an average, 

the cross over time for ESP and reverse ESP is 

after two weeks to months (Figure 7). This 

implies that (on average) relative importance of 

initial condition two weeks to months for all 

catchment and all season. After this time period 

uncertainty in forecast is mainly due to 

uncertainty in forcing data.  As similar conclusion 

was made by Svensson (2016). 

Uncertainty associated with ESP forecast is 

mainly combination of both uncertainty due to 

initial state and climate forcing. In general snow 

coverage of catchments have great influence on 

initial condition of that catchment. This is simply 

because soil moisture level of snow dominated 

catchment is higher than other catchments.  

Moreover, soil moisture level of catchment has 

great influence in flow generation. The analysis 

of relative importance of initial conditions vs 

climate forcing show that the importance of both 

source of uncertainty is different for different 

catchment and different season. This can be due 

to reason that initial state estimation for different 

catchment is different when some catchment 

has high snow coverage than others. 

The major limitation of hindcast based EPS 

forecast is quality of the past data on which the 

data based is made. If quality of the data is not 

good, we will end up with more uncertainty in our 

forecast. The other limitation in present study is 
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not using the climate index to weight the 

ensemble members.  

CONCLUSION 

This study focused on effect of initial condition 

on ESP method for seasonal streamflow 

forecasts. ESP forecast uses conceptual 

hydrologic models to forecast future streamflow 

using the current hydrological conditions such as 

soil moisture, snow water equivalent, depth to 

ground water, with historical meteorological data 

(Day, 1985). The analysis indicates that the 

sensitivity of flow forecast to initial condition 

uncertainty depends on the hydrological regime 

experienced by the basin during the forecast 

period. Maximum variation of flow due to initial 

state is in spring, hence the initial state has more 

pronounced effects on spring than another 

season. On an average, the cross over time for 

ESP and reverse ESP is after two weeks to 

months. This indicates that (on average) the 

relative importance of initial conditions is greater 

within the first two weeks to months of the 

simulation for all catchment and all season. After 

this time period uncertainty in forecast is mainly 

due to uncertainty in forcing data. Since climate 

change is expected to result in increased 

variability of climate forcing, climate change may 

impact the quality of ESP-based forecasts. 

Hence, further research is needed to establish 

the impact of climate change on ESP forecast.  
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