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Time Series Analysis: A Hydrological Prospective

The analysis of time series is based on the assumption that 
successive values in the data file represent consecutive mea-
surements taken at equally spaced time intervals. There are two 
main goals of time series analysis:  (a) identifying the nature of 
the phenomenon represented by the sequence of observations, 
and (b) forecasting or predicting future values of the time series 
variable. Both of these goals require that the pattern of observed 
time series data is identified and more or less formally described. 
Once the pattern is established, one can interpret and integrate it 
with other data (i.e., Use it in the theory of the investigated phe-
nomenon, e.g., Seasonal commodity prices). Regardless of the 
depth of one’s understanding and the validity of our interpretation 
(theory) of the phenomenon, one can extrapolate the identified 
pattern to predict future events. This paper discusses about how 
to analyze time series data, what are its goals, types of time se-
ries data, and models available to analyze time series data.
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INTRODUCTION

How does someone measure the year’s rainfall, 
snow melt, the amount of evaporation, water level 
or how much water is flowing down the river?  
Hydrologists and hydraulic engineers capture 
such data in time series. Time series data are 
used to describe many aspects of the hydrologic 
cycle.  To a hydrologist or a hydraulic engineer, 
time series data are used to define the resources 
and conditions of a water basin. Hydrologists 
use time series data for displaying the amount 
of rainfall that has fallen within a catchment 
for the past day, year or 10 years.  With this 
information, combined with additional time series 
data, hydrologists calculate the amount of runoff 
water and determine the total discharge of the 
catchment.  Hydraulic engineers use measured 
time series of discharge and water level of a 
river for designing new river systems.  They also 
use time series data for defining any input or 
withdrawal of water from the river.  

Time series methods for analysis of hydrological 
data have a history of about half a century and 
continue to be an intense research topic. Time 
series have already played an important role early 
in the natural sciences. Babylonian astronomy 
used time series of the relative positions of 
stars and planets to predict astronomical 
events. Observations of the planets’ movements 
formed the basis of the laws Johannes Kepler 
discovered. The analysis of time series helps 
to detect regularities in the observations of a 
variable and derive ‘laws’ from them, and/or 
exploit all information included in this variable 
to better predict future developments. The basic 
methodological idea behind these procedures, 
which were also valid for the Babylonians, is 
that it is possible to decompose time series into 
a finite number of independent but not directly 
observable components that develop regularly 
and can thus be calculated in advance. For this 
procedure, it is necessary that there are different 
independent factors which have an impact on 
the variable. 

However, since the 1970’s, a totally different 
approach has increasingly been applied to 
the statistical analysis of time series. The 
purely descriptive procedures of classical time 
series analysis were abandoned and, instead, 
results and methods of probability theory and 

mathematical statistics have been employed. 
This has led to a different assessment of the 
role of stochastic movements with respect to 
time series. Whereas the classical approach 
regards these movements as residuals without 
any significance for the structure of time series, 
the modern approach assumes that there are 
stochastic impacts on all components of a time 
series. Thus, the ‘law of movement’ of the whole 
time series is regarded as a stochastic process, 
and the time series to be analyzed is just one 
realization of the data generating process.

Evgenij Evgenievich  Slutzky and the British 
statistician George Udny Yule at the beginning 
of the last century reviewed that time series with 
cyclical properties similar to economic (and other) 
time series can be generated by constructing 
weighted or unweighted sums or differences of 
pure random processes. The authors abandoned 
the idea of different components and assumed 
that there was a common stochastic model for 
the whole generation process of time series2. 
Firstly, this method identifies a specific model on 
the basis of certain statistical figures. Secondly, 
the parameters of this model are estimated. 
Thirdly, the specification of the model is checked 
by statistical tests. If specification errors become 
obvious, the specification has to be changed 
and the parameters have to be re-estimated. 
This procedure is re-iterated until it generates a 
model that satisfies the given criteria. This model 
can finally be used for forecasts.

Time series data contains several pieces of 
information that can be utilized by the user for 
various analytical reasons.  The data are usually 
collected at regular intervals referred as the time 
step and stored as an integer in this data model 
with the time step property.  This type of time 
series data is known as “measured time series 
data”.  The hydrologist might also vary the time 
step for recording more data during a flood or 
during the rainy season to obtain more accurate 
data for depicting the current conditions.  On 
some occasions, and for various reasons, 
some time steps are either skipped or no data 
was collected for a time step or number of time 
steps.  In this case, the values may sometimes 
be interpolated.  Hydrologic models can also 
generate time series data.  This type of time 
series is referred to as a “generated time series”.  
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A time series is a chronological sequence of 
observations on a particular variable. Usually the 
observations are taken at regular intervals (days, 
months, and years), but the sampling could be 
irregular. It consists of two steps: (1) building a 
model that represents a time series, and (2) using 
the model to predict (forecast) future values. 

Based on the theory of probability and stochastic 
processes and more recently complemented 
by advances on the study of chaotic nonlinear 
dynamical systems, time series analysis 
provides a repertoire of mathematical tools for 
the modeling of hydrological systems. Such tools 
have proved very effective and useful in numerous 
applications and case studies. The effectiveness 
of stochastic descriptions of hydrological 
processes may reflect the enormous complexity 
of the hydrological systems, which makes a 
purely deterministic description ineffective.

Stochastic approaches in analysis of observed 
time series have considered by many as ‘‘black 
box’’ approaches that do not help understanding 
of the system at hand. In this respect, they have 
been contrasted to deterministic approaches, 
which reveal the causative mechanisms of the 
natural processes. Such criticism of stochastic 
approaches may be valid in several cases, in 
which the focus was on the algorithmic details 
of the analyses. However, in their generality, 
stochastic approaches and tools are not ‘‘black 
boxes’’ and blind recipes.

The authors applied time series models and 
especially transfer function noise (TFN) models 
to analyze hydrological systems for many 
years17.  In groundwater hydrology, the main 
applications of TFN modeling are decomposition 
of groundwater level fluctuations into natural 
and anthropogenic fluctuations and prediction 
of the effects of interventions. The authors 
applied modern time-series analysis, particularly 
complex demodulation to precipitation series in 
order to investigate temporal fluctuation in the 
decadal averages of the annual precipitation 
cycle in the British Isles and neighboring 
areas14. The authors applied time series analysis 
methodology and techniques in water resources 
management to explore the relationship between 
rainfall and stream flows12.

The authors applied the Hinish tests2 for 
Gaussianity and linearity to selected stationary 

segments of four kinds of such series, namely, 
stream flow, temperature, precipitation, and 
Palmer’s drought severity index to detect non-
linearity in monthly hydrologic time series4,5. 7 
studied the time series analysis of storm behavior 
in Pennsylvania water resources by quantifying 
the place of Karst aquifers in the groundwater to 
surface water continuum. Non-linear time variant 
analysis, such as wavelet transforms further 
defines rainfall-runoff relationships in Karst 
springs and may enable better prediction of input-
output relations, where non-stationary behavior 
occurs. 6developed an approach for river flood 
prediction using time series data mining (TSDM), 
which combines chaos theory and data mining to 
characterize and predict events in complex, non-
periodic, and chaotic time series. They applied 
the TSDM methodology in the prediction of 
floods to the river discharge data at the St. Louis 
Gauging Station. 16 used time series analysis to 
develop an alternative method for reconstructing 
the natural flow regimes in the Murrumbidgee 
(Murray-Darling) river basin using pre-regulation 
climatic variables and river flow data. The method 
to reconstruct river flow time series illustrated in 
the study can be adopted to evaluate the effects 
of river management plans and policies.

Goals of Time Series Analysis 
Time series analysis can be used to accomplish 
different goals as mentioned below: 
1) Descriptive analysis determines what trends 
and patterns a time series has by plotting or 
using more complex techniques. The most basic 
approach is to graph the time series and look 
at the overall trends (increase/decrease), cyclic 
patterns (seasonal effects), outliers (points of 
data that may be erroneous), and turning points 
(different trends within a data series that changes 
over time and does not repeat or at least does 
not repeat with our range captured by our data).
2) Spectral analysis is carried out to describe how 
variation in a time series may be accounted for 
by cyclic components. This may also be referred 
to as “frequency domain”. With this an estimate 
of the spectrum over a range of frequencies can 
be obtained and periodic components in a noisy 
environment can be separated out. 
3) Forecasting can do just that - if a time series 
has behaved a certain way in the past, the 
future behavior can be predicted within certain 
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confidence limits by building models. 
4) Intervention analysis can explain if there is 
a certain event that occurs that changes a time 
series. This technique uses a lot of the time in 
planning experimental analysis. In other words, 
‘Is there a change in a time series before and 
after a certain event?’ 
5) Explanative analysis (Cross-correlation) using 
one or more variable time series, a mechanism 
that results in a dependent time series can be 
estimated. A common question to be answered 
by this analysis would be “What relationship is 
there between two time series data sets?”  
Types of Time Series Data 
Continuous vs. Discrete 
Continuous - observations made continuously in 
time. Examples: Seawater level as measured by 
an automated sensor and Carbon dioxide output 
from an engine. Discrete - observations made 
only at certain times. Examples: Measurements 
of Rainfall, evapotranspiration, infiltration, solar 
radiation etc. 
Stationary vs. Non-stationary 
Stationary - Data that fluctuate around a 
constant value. The properties of time series do 
not change with time. For a stationary series p 
(x; t1) = p (x; t2), where t1 and t2 represent any 
two different possible times. Non-stationary - 
A series having parameters of the cycle (i.e., 
Length, amplitude or phase) changes over time. 
For a non-stationary series p (x; t1) not equal to 
p (x; t2).  
Deterministic vs. Stochastic 
Deterministic time series - This data can be 
predicted exactly as embedded in a built model. 
Stochastic time series - Data are only partly 
determined by past values and future values have 
to be described with a probability distribution. 
Trend Analysis
Trends in a hydrologic time series can result 
from gradual natural or man-induced changes in 
the hydrologic environment producing the time 
series. The trend is a long term movement in 
a time series. It tells whether a particular data 
series have increased or decreased over the 
period of time. Detecting changes in climate 
and hydrologic time series are called as trend 
analysis. For detecting trend in time series data, 
one can use two types of tests: Parametric test 

and Non-Parametric test along with different 
confident tests.
Linear Regression Test 
This is a parametric test that assumes that 
the data are normally distributed.  It tests 
whether there is a linear trend by examining the 
relationship between time (x) and the variable of 
interest (y). The regression gradient is estimated 
by:
                                                                                                         (1)

and the intercept is estimated as: 

a y bx= −                                                                                                                                (2)
The test statistic S is: 

/s b σ=                                                                                             (3)

Where,                                                                                         (4)

The test statistic S follows a Student-t distribution 
with n-2 degrees of freedom under the null 
hypothesis (critical test statistic values for 
various significance levels can be obtained from 
Student’s t statistic tables). The linear regression 
test assumes that the data are normally 
distributed and that the errors (deviations from 
the trend) are independent and follows the same 
normal distribution with zero mean.

Mann-Kendall Test 
This method tests whether there is a trend in 
the time series data. It is a non-parametric test.   
Then time series values (x1, x2, x3,.., xn) are 
replaced by their relative ranks (R1, R2, R3, ….., 
Rn) (starting at 1 for the lowest up to n).

The test statistic S is:                                                             
                                                                   (5)

Where, sgn(x) = 1 for x > 0, sgn(x) = 0 for x = 0, 
and sgn(x) = -1 for x < 0 
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If the null hypothesis Ho is true, then S is 
approximately normally distributed with: µ = 0 
and variance, σ = n (n – 1) (2n + 5) / 18
The z-statistic is therefore (critical test statistic 
values for various significance levels obtained 
from normal probability tables) as:  

z = | S | / σ0.5                                                                                                                       (6)

A positive value of S indicates that there is an 
increasing trend and vice versa.
Autocorrelation Function (ACF)
It is a parametric test for randomness. The lag-
one autocorrelation coefficient is calculated as: 

                                                                                               (7)

If the time series data come from a random 
process, then the expected value and variance 
of r1 are: 

1( ) 1/E r n= −  and                                                         (8)

The z-statistic is therefore (critical test statistic 
values for various significance levels it can be 
obtained from normal probability tables): 

0.5
1 1 1( ) / ( )z r E r Var r= −                                      (9)

                                                                                                         
Partial Autocorrelation Function (PACF)
Measure degree of association between Yt and 
Yt-k. PACF can be calculated by regression 
equation as below:

0 1 1 ...t t k t kY b bY b Y− −= + + +                                  (10)                            
                                                                 
Where, critical value of PACF is (± 2/√ N). 

Correlograms  
The autocorrelation coefficient ‘rk’ can then 
be plotted against the lag (k) to develop a 
correlogram. This will give us a visual look at a 

range of correlation coefficients at relevant time 
lags so that significant values may be seen. 
Box-Jenkins Models 
Box and Jenkins developed the Auto Regressive 
Integrative Moving Average (ARIMA) model 
which combined the Auto Regressive (AR) and 
Moving Average (MA) models developed earlier 
with a differencing factor that removes in trend in 
the data. This time series data can be expressed 
as: Y1, Y2, Y3,…,Yt-1, Yt with random shocks (a) at 
each corresponding time: a1, a2, a3,…,at-1, at. In 
order to model a time series, we must state some 
assumptions about these ‘shocks’. They have a 
mean of zero, constant variance, no covariance 
between shocks, and a normal distribution 
(although there are procedures for dealing with 
this).
Model Estimation and Testing
An ARIMA (p, d, q) model is composed of three 
elements: p: Auto regression, d: Integration or 
Differencing, and q: Moving Average. A simple 
ARIMA (0, 0, 0) model without any of the three 
processes above is written as: Yt = at. Auto 
regression process [ARIMA (p,0,0)] refers to 
how important previous values are to the current 
one over time. A data value at t1 may affect the 
data value of the series at t2 and t3. But the data 
value at t1 will decrease on an exponential basis 
as time passes so that the effect will decrease 
to near zero. It should be pointed out that f1 is 
constrained between -1 and 1 and as it becomes 
larger, the effects at all subsequent lags increase.
 
Yt = f1 Yt-1 + at                                                                                                                 (11)

The integration process [ARIMA (0,d,0)] is 
differenced to remove the trend and drift of the 
data (i.e. makes non-stationary data stationary). 
The first observation is subtracted from the 
second and the second from the third and …. So 
the final form without AR or MA processes is the 
ARIMA (0,1,0) model: 

Yt = Yt-1 + at                                                                                                                      (12)

The moving average process [ARIMA (0,0,q)] 
is used for serial correlated data. The process 
is composed of the current random shock and 
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portions of the q previous shocks. An ARIMA 
(0,0,1) model is described as: 
Yt = at - f1at-1                                           (13)                                                                                                                 

Time Series Intervention Analysis 
The basic question is “Has an event had an 
impact on a time series?” The null hypothesis is 
that the level of the series before the intervention 
(bpre) is the same as the level of the series after 
the intervention:
(bpost) or Ho: bpre - bpost = 0                          (14)                                                        
                             
After building the ARIMA model, an intervention 
term (It) can be added and the ARIMA equation 
is now a noise component: 
(Nt): Yt = f (It) + Nt                                                                                                              (15)

Models used for Time- Series Analysis 

These models can be broadly divided into three 
groups: regression based methods, time series 
models and Auto Integrated (AI) based methods. 
Models for time series data can have many forms 
and represent different stochastic processes. 
When modeling variations in the level of a process, 
three broad classes of practical importance are 
the AR models, the integrated (I) models, and the 
MA models. These three classes depend linearly 
on previous data points. Combinations of these 
ideas produce Auto Regressive Moving Average 
(ARMA) and autoregressive integrated moving 
average (ARIMA) models. The Auto Regressive 
Fractionally Integrated Moving Average 
(ARFIMA) model generalizes the former three.

Among other types of non-linear time series 
models, there are models to represent the changes 
of variance along time (heteroskedasticity). 
These models are called Auto Rregressive 
Conditional Heteroskedasticity (ARCH). Here 
changes in variability are related to, or predicted 
by, recent past values of the observed series. This 
is in contrast to other possible representations 
of locally-varying variability, where the variability 
might be modelled as being driven by a separate 
time-varying process, as in a doubly stochastic 
model.

Autoregressive Process   

Most time series consist of elements that are 
serially dependent in the sense that one can 
estimate a coefficient or a set of coefficients 
that describe consecutive elements of the series 
from specific, time-lagged (previous) elements. 
This can be summarized in the equation: 

( )1 ( 1) 2 ( 2) 3 ( 3)* * * ...                                                                        16t t t tx x x xξ φ φ φ ε− − −= + + + + +    (16)

Where,  ξ  is a constant (intercept), and  1φ , 2φ

, 3φ   are the autoregressive model parameters. 
Put in words, each observation is made up of a 
random error component (random shock,ε ) and 
a linear combination of prior observations. 
Moving Average Process
 Independent from the autoregressive process, 
each element in the series can also be affected by 
the past error (or random shock) that cannot be 
accounted for by the autoregressive component, 
that is: 

 ( )1 ( 1) 2 ( 2) 3 ( 3)* * * ...                                                                         17t t t t tx µ ε θ ε θ ε θ ε− − −= + − − − −            (17)

Where, µ   is a constant, and 1 2 3, ,θ θ θ are the 
moving average model parameters. 
Put in words, each observation is made up of a 
random error component (random shock,ε ) and 
a linear combination of prior random shocks. 

Auto Regressive Moving Average (ARMA) 
Model
Auto Regressive Moving Average (ARMA) 
models were fitted to consider the stochastic 
nature of the stream flows. Traditional time 
series analysis uses Box-Jenkins ARMA models. 
An ARMA model predicts the value of the target 
variable as a linear function of lag values (this 
is the auto-regressive part) plus an effect from 
recent random shock values (this is the moving 
average part). While ARMA models are widely 
used, they are limited by the linear basis function.
                                                                  (18)

For ARMA models proposed2, it is assumed that 
the times series is stationary and follows the 

Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et                                                                                      
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normal distribution. Since 3presented significant 
developments in the form of ARMA models of 
the hydrologic times series, ARMA has been 
one of the most popular hydrologic times series 
models for reservoir design and optimization. 
ARMA is also applied to monthly hydrologic time 
series9. Extensive application and reviews of the 
several classes of such models proposed for the 
modeling of water resources time series were 
reported5, 11, 13, 15, 1, 10.
Auto Regressive Integrated Moving Average 
(ARIMA)
The general model introduced2 includes 
autoregressive as well as moving average 
parameters, and explicitly includes differencing 
in the formulation of the model. Specifically, the 
three types of parameters in the model are: the 
autoregressive parameters (p), the number of 
differencing passes (d), and moving average 
parameters (q). In the notation introduced by Box 
and Jenkins, models are summarized as ARIMA 
(p, d, q). The ARIMA method is appropriate 
only for a time series that is stationary (i.e., its 
mean, variance, and autocorrelation should 
be approximately constant through time) and 
it is recommended that there are at least 50 
observations in the input data. It is also assumed 
that the values of the estimated parameters are 
constant throughout the series. 
ArcGIS Hydro Data Model
Including time series data in the ArcGIS Hydro 
data model not only builds a complete hydrologic 
data model for use within the ArcInfo environment, 
but also it makes less distinct boundary between 
what is in a GIS database and what is used by 
a hydraulic model.  Hydraulic models have been 
utilizing time series data for many years. The time 
series objects in the ArcGIS Hydro data model are 
designed for two purposes.  One is the storage 
and delivery of a complete hydro data model  to 
include time series data.  Therefore, the storage 
and delivery of time series data within the Geo 
database is essential.  The second intention is 
to provide access to this data structure for the 
hydraulic models so that the division between 
the GIS and the hydraulic model becomes less 
distinct.

River Analysis Package (RAP)

RAP (River Analysis Package) is a collection of 
three tools: Hydraulic Analysis (HA) - examines 

the hydraulic characteristics of river channels 
to determine the optimal discharge for a river 
reach based on specified rules, Time Series 
Analysis (TSA) - calculates summary statistics of 
time series data, including hydrological metrics, 
and Time Series Manager - manipulates and 
manages time series data. The TSA module 
has been designed to calculate summary 
metrics of daily discharge data, however it can 
handle other forms of time series data such as 
time series hydraulic data output from the HA 
module. The range of statistics calculated by the 
TSA module has been informed by a review of 
the literature, focusing on hydrological statistics 
used in ecological studies. The TSA module 
can present summary statistics based on the 
entire period of record, annually, seasonally, 
or monthly depending on the specific issue 
being investigated. The TSA module includes 
spell analysis, rates of hydrograph rise and fall, 
prediction of flood return interval (partial and 
annual series), baseflow, and seasonality. In 
addition to the numeric output, the TSA module 
has some neat visualization tools for plotting 
flow duration curves, flood frequency curves, 
and baseflow vs flood-flow. In addition to above, 
there is many more package tools are used for 
hydrologic studies. The hard of the decision is 
which one to use and it depends of the dataset 
i.e. Digital Terrain Model (DTM), Digital Elevation 
Model (DEM), Rugossity, grid spatial resolution, 
computer equipment, etc.

Analysis of Time-Series in Hydrology

Linear models and distributed variables are 
usually used in time series analysis mainly due 
to the convenience in studying relevant statistical 
properties. For models such as linear AR and 
ARMA, procedures for model identification and 
parameter estimation have been well formalized 
based on Gaussianity and linearity. However, 
non-linear mechanisms are often encountered 
in physical sciences. Non-Gaussian stationary 
time series may be generated as a result from 
a specific non-linear operation on a Gaussian 
input process. Therefore, non-linear modeling 
approaches have gained increasing attention 
from time series analysts. Although the rainfall-
runoff process is widely perceived as being non-
linear, the signatures of non-linearity are not all 
recognizable in hydrologic time series. By using 
Hinich test8, non-linearity is detected in daily 
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hydrologic time series, but not in annual series. 
Monthly hydrologic time series is seasonal with a 
cycle of 12 months. A standardization procedure 
is often applied to monthly hydrologic time series. 
If a time series has a regular pattern, then a value 
of the series should be a function of previous 
values. If Y is the target value that we are trying 
to model and predict, and Yt is the value of Y at 
time t, then the goal is to create a model of the 
form: 
                                                                    (19)

Where, Yt-1 is the value of Y for the previous 
observation, Yt-2 is the value two observations 
ago, etc., and et represents noise that does 
not follow a predictable pattern (this is called a 
‘random shock’). Values of variables occurring 
prior to the current observation are called ‘lag 
values’. If a time series follows a repeating 
pattern, then the value of Yt is usually highly 
correlated with Yt-cycle, where cycle is the number 
of observations in the regular cycle. For example, 
monthly observations with an annual cycle often 
can be modeled by: 
                                                                  (20)

The goal of building a time series model is the 
same as the goal for other types of predictive 
models, which is to create a model such that 
the error between the predicted value of the 
target variable and the actual value is as small 
as possible. The primary difference between 
time series models and other types of models 
is that lag values of the target variable are 
used as predictor variables, whereas traditional 
models use other variables as predictors, and 
the concept of a lag value doesn’t apply because 
the observations don’t represent a chronological 
sequence.

Yt = f(Yt-1, Yt-2, Yt-3, …, Yt-n) + et                                                                                

Yt = f (Yt-12)                                                                                                                                
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ABBREVIATIONS

TFN Transfer Function Noise 
TSDM Time Series Data Mining 
PACF Partial Autocorrelation Function 
ACF Autocorrelation Function 
ARIMA Auto Regressive Integrative Moving Average 
AR Auto Regressive 
MA Moving Average 
AI Auto Integrated 
ARMA Auto Regressive Moving Average 
ARFIMA Auto Regressive Fractionally Integrated Moving Average 
ARCH Auto Rregressive Conditional Heteroskedasticity 
TSA Time Series Analysis
HA Hydraulic Analysis 
DTM Digital Terrain Model
DEM Digital Elevation Model


