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INTRODUCTION 

The word transputer is a derivative name from the 
Transistor Computer. The transputer was 
conceived of as a building block for electronic 
systems comprising a processor, memory and a 
communication system. Large systems were to be 
constructed from collections of transputers, each 
running a program and communicating with other 
transputers (Quora, n.d). 

The Inmos transputer was a British-designed, 
novel parallel microprocessor architecture from 
the early1980s. The transputer was unique in that 
each processor had a built-in simple operating 
system, memory and four high speed (20 Mbit/s 
full duplex) bi-directional serial links. The 
transputer is essentially a computer system on a 
chip. The links on the transputer allow connection 
to up to four other transputers or peripherals such 
as video graphics, floppy and hard disc drives, 
Ethernet networking and standard RS-232 serial 
ports (Jaros, Ohlidal and Dvorak, 2005). 

The rationale behind the design of the transputer 
came from the point-to-point connection 
architecture of the Modular-One computer and the 
work of Tony Hoare (of QuickSort fame) on 
Communication between Sequential Processes. 
His seminal paper led to the design of the 
Transputer and the parallel programming 
language Occam by David May. Starting in early 
1981 David May designed the Transputer and the 
novel Occam language and compiler. It was not 
until 1985 that the first prototype Transputers 
came off the production line at the Inmos foundry 
at Newport, Gwent (Borger and Stark, 2012). 

Inmos was sold to Thorn EMI under the privatizing 
Thatcher government in the mid-80s, and later to 
SGS Thomson, Transputer development 
continued, but was eventually abandoned. It's not 
so easy to kill the Hydra-headed Transputer. The 
site of the original Inmos design centre in Bristol is 
now owned by STMicroelectronics (May, n.d). 

This paper discusses the original purposes of the 
transputer technology, how they have been 
addressed over the intervening past years, the 
architectural designs and network. It also 
emphasizes the factors that promoted the effacing 
of transputers and the Restoration movement of 
transputer. 

The study was carried out by performing in-depth 
study on transputer literatures. 

THE TRANSPUTER TECHNOLOGY DRIFT 

Si  according to 
(Fox, Williams, and Messina, 2014), the 
transputer has drawn much attention among 
researchers and design engineers, due its novel 
architectural features and excellent performance. 

(Sheen, Allen, Ripke, and Woo, 1998), stated that 
the Inmos transputer device range, which started 
with the T414 in 1983, was continued with a 
series: the 16-bit T212, T222 and T225. The 32 bit 
line was extended with the T425, which ran with a 
faster processor clock, more internal memory and 
also improved the instruction set and debug 
architecture. The T800, announced around 1987, 
included a formally verified IEEE conformant 
Floating Point Unit (FPU) (quite rare for the period) 
and was developed soon after the release of the 
T414. 

It was followed by the T801 and T805, introducing 
among other things the improved software debug 
also seen on the T425. The M212 was an early 
trial of an Application Specific Standard Part 
(ASSP): an MFM disk interface controller version 
of the T212 (Sheen, et al., 1998). 

The T9000, intended as the next in the line, was 
announced with support for a significantly 
extended instruction set, a hardware 
implementation of virtual channels, superscalar 
performance and clock speeds which once again 
matched the competition, but for various reasons 
the chip was delayed, suffered badly from silicon 
bugs, and eventually canned years late having 
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reached about a quarter of its intended 
performance (May, 2005). 

Finally, the T400 (a 2 link T425 with reduced 
internal memory) and T450 (a T425 with extra 
internal memory and enhanced instructions) 

transputers. 

By the time the T450 (later known as the ST20) 
was in the field, interest in the transputer range as 
a whole was waning, and having already turned 
away from occam SGS Thompson announced 

gave the impression it was dropping the line 
entirely (May, 2005). 

As shown in figure 1 below, other processors were 
moving on too

steadily growing, with the 80186 embedded 
system version gaining a lot of popularity, helped 
by the ready availability of compilers, support tools 
and chips produced for the burgeoning IBM PC 
market. Although the x86 range was not 
particularly powerful, they were quite capable of 
many of the tasks being asked of them. The 
Motorola 68000 series, having dropped 
significantly in price since its release and gained a 
number of specialized variants, also gained a lot 
design wins. Both the Intel and Motorola 
processors had one significant point in their favour 

 low price. Gained partly through volume and 
partly through in house fab lines, much of the 
market is very price sensitive (Hilton and Ivimey, 
n.d). 

 

 

FIGURE 1: This is figure 1. The release dates of various Transputers and some of their competitors 
(Hilton and Ivimey, n.d). 
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Hitachi entered the market with its Z80 compatible 
range of processors  the HD64180 being a 
significant advance on the ageing Z80, and have 
carried on with the SH series which was very 
successful indeed. A number of new designs 
emerged from Zilog themselves, but the Z8000 
and Z800 never caught on in a big way. 

During this time, a community of academic and 
commercial developers had grown around the 
technology; user groups such as The World 
occam and Transputer User Group (WoTUG), and 
The North American Transputer User Group 
(NATUG) grew and gained large followings. For 
some time, the community supported several 
conferences a year averaging 250 delegates 
each. A lot of experience was gained in the use of 
the very fine grained parallelism which was 
offered by the transputer. An interesting 
observation was made that the programmers with 
a background in hardware design fared better with 
the design of these highly parallel systems than 
did those with a traditional computer science 
background. This experience has undoubtedly 
had its effect on the software community at large; 
a very large number of engineers have at least 
heard of the transputer, and quite a number of 

those people are aware of the capabilities of the 
device. What is a bit sad is that what is 
remembered best in the industry is the 

 for example its use of an 
odd language as well as the rather unusual 
inclusion of fast communications links in 
preference to GPIO lines or an RS232 interface  
rather than the benefits these things provided 
(Morse, 2014). 

On the commercial front a lot of products were 
developed around the Inmos suggested TRAM 
format. This was a PCB with a base unit size 
slightly longer than credit card size, which could 
be plugged into a motherboard with connectors 
along the short sides. Designs requiring a larger 

connectors carried mostly a number of OS Link 
interfaces. Bringing out address or data bus would 
have been contrary to the basic principle of the 
transputer. According to (Furber, 2017), the 
design of TRAMS was well received and many 
devices were put on it, including high resolution 
graphics cards, RS232 and RS432 serial 
interfaces along with the expected T4 or T8 CPU 
plus memory. 

  

The transputer is a programmable device on a 
single chip with a stunning performance. The 
importance of the transputer is that it provides a 
higher level of abstraction in the design of 
information systems, due to its inherent support 
for multiprocessing (Furber, 2017). (Bhowmick 
and Prasad, 2017), said opined that 
multiprocessing is the only way to provide the high 
performance levels demanded by some present-
day applications at a moderate cost. Due to 
limitations of a physical nature, technology cannot 
provide sufficient increase in performance, so new 
techniques are needed. Multiprocessing is 
definitely the most important one.  

The key innovation of the transputer is its inherent 
concurrency. In all processors multi-tasking is 

done by software (the operating system kernel) 
that gives slices of CPU time to every task that is 
ready to run (time slicing). But with the transputer, 
however, this multi-tasking kernel and scheduler 

microcode, which makes the transputer ideally 
suited for multi-tasking applications (very fast 
context switching) (Laplante and Milojicic, 2016). 

Transputers during its era saw its purposes in 
satisfying several applications. (MATSUI, 2015) 
Identified some of the areas the transputer had 
gained grounds: High speed multiprocessor 
systems, Workstations and workstation clusters, 
Supercomputers, Real time processing, Scientific 
and mathematical applications, Digital signal 
processing, Accelerator processors, Distributed 
databases, System simulation, 
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Telecommunications, Microprocessor 
applications, Industrial control, Robotics, Fault 
tolerant systems, Medical instrumentation, 

Graphics processing, Image processing, Pattern 
recognition, Artificial intelligence, etc. 

TRANSPUTER ARCHITECTURE DESIGN AND 
NETWORK 

The transputer, manufactured by INMOS, is a 
single chip Very Large Scale Interface (VLSI) 
device with processor, memory, and 
communications links. This represents a slight 
deviation from microprocessor 
architecture. The common features of transputers 
are:  High speed integer processor with micro-
codes process scheduler; On-chip fast static 
memory; Up to four links for communication with 
other transputers; Internal timers; and External 
memory interface (Chertovskikh and Rachek, 
2014). 

 Architectural Design 

The INMOS transputer is the first single-chip 
microprocessor to provide a high speed 
processor, fast inter-processor communications, 
and explicit support for multiple processes and 
multiple processor systems. Transputers are 
designed to be part of a multiprocessor system, so 
the performance of an individual processor is not 
especially critical. If more processing power is 
needed, more processors can simply be added. 
Figure 2 below shows the block diagram of a 
generic transputer. 

 

FIGURE 2: This is figure 2. The block diagram of a generic transputer (Transputer, 1993). 
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The internal design of the transputer is unlike that 

of any of its predecessors (Fox et al., 2014). The 
central concept of transputer architecture is that of 
the process. A process represents an individual 
thread of control and the transputer switches 
between running processes to provide the illusion 
that they are all running simultaneously. This is 
normally handled by the operating system and 
called multitasking, but in the transputer, this is 
implemented in hardware and micro-coding 
(Haefner, 2018). 

According to (Manet and Rousseau, 2016), all 
transputers have a fast integer processor and 
many instructions that take only a single cycle of 
the processor clock to complete. Transputers 
were manufactured with clock speeds up to 25 
MHz. All transputers, however, operate from an 
external clock speed of 5 MHz. The processor 
clock is obtained from an internal phase-locked 
loop multiplier. 

 The Floating Point Unit 

The Floating Point Unit is that part of a processor 

which performs floating point arithmetic. Some 
series of transputers have a 32/64-bit floating 
point unit that conforms to the IEEE 754-1985 
specification. The floating point unit (FPU) has an 
evaluation stack similar to that of the integer 
processor, with three registers: FA, FB, and FC. 
Each of these registers can contain either a 32-bit 
or a 64-bit number and has a flag to show which 
of these it does contain. The FPU design is a 
compromise between maximizing overall 
processor performance and minimizing chip area. 
Because of this, the FPU has no flash multiplier or 
barrel shifter. However, the performance is good, 
with single and double precision multiplication 
times of 550 and 1000 nanoseconds respectively, 
for a 20 MHz device (Cohen and Wang, 2014). 
The FPU operates concurrently with the integer 
processor, and thus computation can be speeded 
up by overlapping integer and floating-point 
processing. Figure 3 shows the floating point unit. 

 

 

Figure 3: This is figure 3. The Floating Point Unit (Transputer, 1993) 
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 The Transputer Network 

A typical Transputer has four hardware 
communication ports, permitting a variety of 
configuration patterns when a number of these 
processors are linked together. This was 
demonstrated by (Hass, Kuila and Shahid, 2017), 
where applications requiring distributed 
processing from a single stream of control data, 
the most effective arrangement can be shown to 
be a ternary tree, providing hierarchical control. 

While a simple tree structure provides short path 
lengths between the arbitrary nodes, a modified 
ternary tree can also achieve this between siblings 
at the same level, thus increasing the scope for 
achieving both efficiency and flexibility in the flow 
of data between transputers. Four of these single 
elements, a total of 16 transputers, are mounted 
on a standard 3U printed circuit board as shown 
in Figures 4 and 5. The transputers are 
permanently hardwired to each other. 

 

 

Figure 4: This is figure 4. Basic Network Topology of a 16-Transputer Board (Itagaki et al., 2018).  

 

 

Figure 5: This is figure 5. Printed Circuit Board with 16 Transputers (Itagaki et al., 2018).  



Nzenwata Uchenna J et al., GJAI, 2019; 1:5 

https://escipub.com/global-journal-of-artificial-intelligence/                             8

The rationale behind this design feature is that a 
real-time distributed system should not require a 
large amount of on-board memory for inter 
mediate data storage. Each transputer thus uses 
only its internal 4 kB memory for programming 
purposes. This results in a total of 160 
transputers with 640 kB of internal memory 
distributed across the network in the case of the 
10-board system, as shown in figure 6, and a 
maximum processing power of 1.4 GIPS. The 
absence of local external memory necessitates 
compact algorithms for execution at audio 
sampling rates and the use of a compact code 
such as Occam, a programming language 
designed specifically for the transputer family. 

  

In the words of (Furber, 2017), the transputer 
does not readily fall into either the CISC 
(complex instruction set) or the RISC (reduced 
instruction set) categories. It has a simple 
instruction set, called Occam, and tends to be 
viewed as a RISC processor. However, it is 
much more than a RISC processor because of 
the functionality built into the chip to support high 
level concepts such as processes, timers, and 
inter-process communication. Programmers 
used to programming other microprocessors 
may find programming the transputer to be a 
strange experience (Bull, 2016). There is only a 
small number of registers that are organized as 
a stack, and all instructions are stack, rather than 
register oriented. There is little concept of 
condition codes, only limited instructions for 
accessing memory, and more sophisticated 
memory-addressing modes (Heath, 2014). 

The language created by Inmos is the Ocam. It 
was based on research by (He, Joseph and 
Hoare, 2015) that described a mathematical 
language called Communicating Sequencing 
Processes (CSP). CSP describes the 
interactions of processes interacting through the 
exchange of signals or messages. In CSP, the 
internals of a process are opaque, as are the 
events. In occam, CSP processes are 
implemented as tasks, and events as messages 
communicated over one- to-one links. This 

mapping retains an extremely important feature 
of CSP: processes can be composed. For an 
instance, if two processes x and y interact 
together and with some environment, the 
external behaviour can be modeled as a process 
z. If y is replaced with another process 
implementing its external behavior, you also end 
up with z so long as x and y are composed. 
Composition of processes is believed to be 
essential to the ability to effectively design 
systems. Consider how it would be if you had to 
use a particular finger to switch on a light. In real 
world, things do exhibit composition. 

THE EFFACEMENT OF TRANSPUTER 

The transputer invention was a realistic 
implementation multiprocesses. It was intended 
to provide high performance at low cost. The 
main idea behind the transputer was quite 
simple: instead of creating a very complex 
processor, the transputer consisted of a family of 
chips. Each chip had a very simple design and 
multiple chips could be wired together to form an 
entire computer. Each transputer chip was in fact 
some kind of a microcontroller and was able to 
boot and operate by itself, it had its own RAM, a 
serial bus and an embedded real-time OS. 

there were problems that promoted the 
effacement of the transputer. These problems 
birth the replacement of the transputer with 
sophisticated approach to multiprocessing: the 
Intel core microprocessors. 

Occam was developed to specifically support 
the development of the fine grained parallel 
processing environments supported by the 
transputer model and typical of those found in 
embedded systems. It also supports extensive 
checking of programs, threaded or not (Haefner, 
2018). 

FACTORS THAT PROMOTED THE 
EFFACEMENT OF THE TRANSPUTER 

There are ample number of factors, amidst the 
pool of the transputer architecture applications 
that militated against its permissive use through  
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the generations of computing processor. Some 
of the major reasons are identified in this study.  

 Computing Power Scalability 

As the computing power increases overtime, 
there came a need for a miniature architecture 
which birth the microchips. The latching of 
transistors became a bulky technology to be laid 
on a mother board of a system. The idea of 
developing a high speed processor with 
compressed IC board became essential for the 
growth of microprocessor speed. Also, since a 
high computing power gained by the 
combination of multiple transistors can be 
replication in a small high speed 
microprocessor, transputers application 
diminished due to the large size of trasputers 
network. 

 Need for Superscalar Processing 

According to (Denning and Lewis, 2017), 
growing internal parallelism has been one 
driving force behind improvements in 
conventional CPU designs. Instead of explicit 
thread-level parallelism, as is used in the 
transputer, CPU designs exploited implicit 
parallelism at the instruction-level, inspecting 
code sequences for data dependencies and 
issuing multiple independent instructions to 
different execution units. This is termed 
superscalar processing. Superscalar processors 
are suited for optimising the execution of 
sequentially constructed fragments of code. 
Given these substantial and regular 
performance improvements to existing code 
there was little incentive to rewrite software in 
languages or coding styles which expose more 
task-level parallelism. 

Unlike the transputer architecture, the 
processing units in these systems typically use 
superscalar CPUs with access to substantial 
amounts of memory and disk storage, running 
conventional operating systems and network 
interfaces. Resulting from the more complex 
nodes, the software architecture used for 
coordinating the parallelism in such systems is 

typically far more heavyweight than in the 
transputer architecture (Agullo et al., 2017). 

 The Inmos Patent Right Transfer 

Inmos improved on the performance of the T8 
series transputers with the introduction of the 
T9000 (Haase and Pester, 2013). The T9000 
shared most features with the T800, but moved 
several pieces of the design into hardware and 
added several features for superscalar support. 

Long delays in the T9000's development meant 
that the faster load/store designs were already 
outperforming it by the time it was to be 
released. It consistently failed to reach its own 
performance goal of beating the T800 by a factor 
of ten. When the project was finally cancelled it 
was still achieving only about 36 MIPS at 
50 MHz. The production delays gave rise to the 
quip that the best host architecture for a T9000 
was an overhead projector. This was too much 
for Inmos, which did not have the funding 
needed to continue development. By this time, 
the company had been sold to SGS-Thomson, 
now STMicroelectronics, whose focus was the 
embedded systems market, and eventually the 
T9000 project was abandoned (Clark, 2006). 

When Inmos was sold to Thorn EMI under the 
privatising Thatcher government in the mid-80s, 
and later to SGS Thomson, Transputer 
development continued, but was eventually 
abandoned. 

 Poor Memory Management Unit (MMU) 

Another major problem of the transputer was the 
lack of an MMU or virtual memory support, which 
prevented UNIX to be ported to the transputer 
architecture. Although there were ports of some 
UNIX-like OSes. 

   The Ocam Wane 

The occam language, known as the transputer 
language or instructions set, was though 
hampered by the lack of compilers for other 
chips, it waxed as real time systems developers 
discovered its expressive power. However, as 
the transputers lost their speed advantage 
against other processors, people found them 
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less and less practical, and the use of occam 
waned too. 

 The Restoration Movement of 
Transputer. 

It was after Inmos was sold out that the idea of 
Transputer restoration project came up. After the 
termination of T9000 project, there was a 
comprehensive redesigned 32-bit transputer 
intended for embedded applications, the ST20 
series, using some technology developed for the 
T9000. The ST20 core was incorporated into 
chipsets for set-top box and Global Positioning 
System (GPS) applications. According to (May, 
2005), ST20 was not strictly a transputer, but it 
was heavily influenced by the T4 and T9 and 
formed the basis of the T450, which was 
arguably the last of the transputers. 

The kernel of the idea to breathe life back into a 
forgotten piece of British technological genius 
was given by Paul Walker, of 4Links Ltd, who 
worked with the Inmos Transputer in the early 
days and took forward some of its design ideas 
to help create SpaceWire, a serial 
communication technology used throughout the 
space industry (Chintalapati, 2016). 

According to (Project Aims, n.d), the transputer 
Restoration Project aims to bring into service 
and maintain two fully functioning Inmos 
Transputer Development System units. The first 
unit contains 64 processors and runs a 
demonstration of parallel processing of this 
1980's technology using a Mandelbrot Set 
generator and a Ray Tracing simulation. Also, a 
system containing two banks of 12 processors 
with dedicated video cards and monitors to drive 
a dual flight simulator. 

A longer term project is to restore a large system 
based around a network of 100 T9000 
Transputers that were originally used for fast 
data capture at the European Organization for 
Nuclear Research (CERN). 

SUMMARY 

The intention of this paper was to review and 
summarize the era, and the idea of the 
transputers technology which birth the 

implementation of today
microprocessors. 

We have looked at the basis of the transputer: 
the elements of simplicity and in integration that 
made it a useful and very powerful processor in 
its own time. We noted here that the transputers 
were designed to satisfy their original purposes. 
We have also identified the occam language as 
the instruction set of the transputer which Inmos 
designed with the transputer to provide high 
level access to these facilities.  

We looked at how the transputer evolved and 
addressed over the intervening past years, here, 
we discussed the architectural design and the 
network of transputers. 

Some of the factors that contributed to the dead 
end of the transputer legacy were identified. We 
also discussed how these factors hindered the 

 operations. Finally, 
we reported that a transputer restoration project 
to bring into service and maintenance two fully 
functioning Inmos Transputer Development 
System units. 
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