

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 2

INTRODUCTION

The word transputer is a derivative name from the
Transistor Computer. The transputer was
conceived of as a building block for electronic
systems comprising a processor, memory and a
communication system. Large systems were to be
constructed from collections of transputers, each
running a program and communicating with other
transputers (Quora, n.d).

The Inmos transputer was a British-designed,
novel parallel microprocessor architecture from
the early1980s. The transputer was unique in that
each processor had a built-in simple operating
system, memory and four high speed (20 Mbit/s
full duplex) bi-directional serial links. The
transputer is essentially a computer system on a
chip. The links on the transputer allow connection
to up to four other transputers or peripherals such
as video graphics, floppy and hard disc drives,
Ethernet networking and standard RS-232 serial
ports (Jaros, Ohlidal and Dvorak, 2005).

The rationale behind the design of the transputer
came from the point-to-point connection
architecture of the Modular-One computer and the
work of Tony Hoare (of QuickSort fame) on
Communication between Sequential Processes.
His seminal paper led to the design of the
Transputer and the parallel programming
language Occam by David May. Starting in early
1981 David May designed the Transputer and the
novel Occam language and compiler. It was not
until 1985 that the first prototype Transputers
came off the production line at the Inmos foundry
at Newport, Gwent (Borger and Stark, 2012).

Inmos was sold to Thorn EMI under the privatizing
Thatcher government in the mid-80s, and later to
SGS Thomson, Transputer development
continued, but was eventually abandoned. It's not
so easy to kill the Hydra-headed Transputer. The
site of the original Inmos design centre in Bristol is
now owned by STMicroelectronics (May, n.d).

This paper discusses the original purposes of the
transputer technology, how they have been
addressed over the intervening past years, the
architectural designs and network. It also
emphasizes the factors that promoted the effacing
of transputers and the Restoration movement of
transputer.

The study was carried out by performing in-depth
study on transputer literatures.

THE TRANSPUTER TECHNOLOGY DRIFT

Si according to
(Fox, Williams, and Messina, 2014), the
transputer has drawn much attention among
researchers and design engineers, due its novel
architectural features and excellent performance.

(Sheen, Allen, Ripke, and Woo, 1998), stated that
the Inmos transputer device range, which started
with the T414 in 1983, was continued with a
series: the 16-bit T212, T222 and T225. The 32 bit
line was extended with the T425, which ran with a
faster processor clock, more internal memory and
also improved the instruction set and debug
architecture. The T800, announced around 1987,
included a formally verified IEEE conformant
Floating Point Unit (FPU) (quite rare for the period)
and was developed soon after the release of the
T414.

It was followed by the T801 and T805, introducing
among other things the improved software debug
also seen on the T425. The M212 was an early
trial of an Application Specific Standard Part
(ASSP): an MFM disk interface controller version
of the T212 (Sheen, et al., 1998).

The T9000, intended as the next in the line, was
announced with support for a significantly
extended instruction set, a hardware
implementation of virtual channels, superscalar
performance and clock speeds which once again
matched the competition, but for various reasons
the chip was delayed, suffered badly from silicon
bugs, and eventually canned years late having

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 3

reached about a quarter of its intended
performance (May, 2005).

Finally, the T400 (a 2 link T425 with reduced
internal memory) and T450 (a T425 with extra
internal memory and enhanced instructions)

transputers.

By the time the T450 (later known as the ST20)
was in the field, interest in the transputer range as
a whole was waning, and having already turned
away from occam SGS Thompson announced

gave the impression it was dropping the line
entirely (May, 2005).

As shown in figure 1 below, other processors were
moving on too

steadily growing, with the 80186 embedded
system version gaining a lot of popularity, helped
by the ready availability of compilers, support tools
and chips produced for the burgeoning IBM PC
market. Although the x86 range was not
particularly powerful, they were quite capable of
many of the tasks being asked of them. The
Motorola 68000 series, having dropped
significantly in price since its release and gained a
number of specialized variants, also gained a lot
design wins. Both the Intel and Motorola
processors had one significant point in their favour

 low price. Gained partly through volume and
partly through in house fab lines, much of the
market is very price sensitive (Hilton and Ivimey,
n.d).

FIGURE 1: This is figure 1. The release dates of various Transputers and some of their competitors
(Hilton and Ivimey, n.d).

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 4

Hitachi entered the market with its Z80 compatible
range of processors the HD64180 being a
significant advance on the ageing Z80, and have
carried on with the SH series which was very
successful indeed. A number of new designs
emerged from Zilog themselves, but the Z8000
and Z800 never caught on in a big way.

During this time, a community of academic and
commercial developers had grown around the
technology; user groups such as The World
occam and Transputer User Group (WoTUG), and
The North American Transputer User Group
(NATUG) grew and gained large followings. For
some time, the community supported several
conferences a year averaging 250 delegates
each. A lot of experience was gained in the use of
the very fine grained parallelism which was
offered by the transputer. An interesting
observation was made that the programmers with
a background in hardware design fared better with
the design of these highly parallel systems than
did those with a traditional computer science
background. This experience has undoubtedly
had its effect on the software community at large;
a very large number of engineers have at least
heard of the transputer, and quite a number of

those people are aware of the capabilities of the
device. What is a bit sad is that what is
remembered best in the industry is the

 for example its use of an
odd language as well as the rather unusual
inclusion of fast communications links in
preference to GPIO lines or an RS232 interface
rather than the benefits these things provided
(Morse, 2014).

On the commercial front a lot of products were
developed around the Inmos suggested TRAM
format. This was a PCB with a base unit size
slightly longer than credit card size, which could
be plugged into a motherboard with connectors
along the short sides. Designs requiring a larger

connectors carried mostly a number of OS Link
interfaces. Bringing out address or data bus would
have been contrary to the basic principle of the
transputer. According to (Furber, 2017), the
design of TRAMS was well received and many
devices were put on it, including high resolution
graphics cards, RS232 and RS432 serial
interfaces along with the expected T4 or T8 CPU
plus memory.

The transputer is a programmable device on a
single chip with a stunning performance. The
importance of the transputer is that it provides a
higher level of abstraction in the design of
information systems, due to its inherent support
for multiprocessing (Furber, 2017). (Bhowmick
and Prasad, 2017), said opined that
multiprocessing is the only way to provide the high
performance levels demanded by some present-
day applications at a moderate cost. Due to
limitations of a physical nature, technology cannot
provide sufficient increase in performance, so new
techniques are needed. Multiprocessing is
definitely the most important one.

The key innovation of the transputer is its inherent
concurrency. In all processors multi-tasking is

done by software (the operating system kernel)
that gives slices of CPU time to every task that is
ready to run (time slicing). But with the transputer,
however, this multi-tasking kernel and scheduler

microcode, which makes the transputer ideally
suited for multi-tasking applications (very fast
context switching) (Laplante and Milojicic, 2016).

Transputers during its era saw its purposes in
satisfying several applications. (MATSUI, 2015)
Identified some of the areas the transputer had
gained grounds: High speed multiprocessor
systems, Workstations and workstation clusters,
Supercomputers, Real time processing, Scientific
and mathematical applications, Digital signal
processing, Accelerator processors, Distributed
databases, System simulation,

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 5

Telecommunications, Microprocessor
applications, Industrial control, Robotics, Fault
tolerant systems, Medical instrumentation,

Graphics processing, Image processing, Pattern
recognition, Artificial intelligence, etc.

TRANSPUTER ARCHITECTURE DESIGN AND
NETWORK

The transputer, manufactured by INMOS, is a
single chip Very Large Scale Interface (VLSI)
device with processor, memory, and
communications links. This represents a slight
deviation from microprocessor
architecture. The common features of transputers
are: High speed integer processor with micro-
codes process scheduler; On-chip fast static
memory; Up to four links for communication with
other transputers; Internal timers; and External
memory interface (Chertovskikh and Rachek,
2014).

 Architectural Design

The INMOS transputer is the first single-chip
microprocessor to provide a high speed
processor, fast inter-processor communications,
and explicit support for multiple processes and
multiple processor systems. Transputers are
designed to be part of a multiprocessor system, so
the performance of an individual processor is not
especially critical. If more processing power is
needed, more processors can simply be added.
Figure 2 below shows the block diagram of a
generic transputer.

FIGURE 2: This is figure 2. The block diagram of a generic transputer (Transputer, 1993).

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 6

The internal design of the transputer is unlike that

of any of its predecessors (Fox et al., 2014). The
central concept of transputer architecture is that of
the process. A process represents an individual
thread of control and the transputer switches
between running processes to provide the illusion
that they are all running simultaneously. This is
normally handled by the operating system and
called multitasking, but in the transputer, this is
implemented in hardware and micro-coding
(Haefner, 2018).

According to (Manet and Rousseau, 2016), all
transputers have a fast integer processor and
many instructions that take only a single cycle of
the processor clock to complete. Transputers
were manufactured with clock speeds up to 25
MHz. All transputers, however, operate from an
external clock speed of 5 MHz. The processor
clock is obtained from an internal phase-locked
loop multiplier.

 The Floating Point Unit

The Floating Point Unit is that part of a processor

which performs floating point arithmetic. Some
series of transputers have a 32/64-bit floating
point unit that conforms to the IEEE 754-1985
specification. The floating point unit (FPU) has an
evaluation stack similar to that of the integer
processor, with three registers: FA, FB, and FC.
Each of these registers can contain either a 32-bit
or a 64-bit number and has a flag to show which
of these it does contain. The FPU design is a
compromise between maximizing overall
processor performance and minimizing chip area.
Because of this, the FPU has no flash multiplier or
barrel shifter. However, the performance is good,
with single and double precision multiplication
times of 550 and 1000 nanoseconds respectively,
for a 20 MHz device (Cohen and Wang, 2014).
The FPU operates concurrently with the integer
processor, and thus computation can be speeded
up by overlapping integer and floating-point
processing. Figure 3 shows the floating point unit.

Figure 3: This is figure 3. The Floating Point Unit (Transputer, 1993)

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 7

 The Transputer Network

A typical Transputer has four hardware
communication ports, permitting a variety of
configuration patterns when a number of these
processors are linked together. This was
demonstrated by (Hass, Kuila and Shahid, 2017),
where applications requiring distributed
processing from a single stream of control data,
the most effective arrangement can be shown to
be a ternary tree, providing hierarchical control.

While a simple tree structure provides short path
lengths between the arbitrary nodes, a modified
ternary tree can also achieve this between siblings
at the same level, thus increasing the scope for
achieving both efficiency and flexibility in the flow
of data between transputers. Four of these single
elements, a total of 16 transputers, are mounted
on a standard 3U printed circuit board as shown
in Figures 4 and 5. The transputers are
permanently hardwired to each other.

Figure 4: This is figure 4. Basic Network Topology of a 16-Transputer Board (Itagaki et al., 2018).

Figure 5: This is figure 5. Printed Circuit Board with 16 Transputers (Itagaki et al., 2018).

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 8

The rationale behind this design feature is that a
real-time distributed system should not require a
large amount of on-board memory for inter
mediate data storage. Each transputer thus uses
only its internal 4 kB memory for programming
purposes. This results in a total of 160
transputers with 640 kB of internal memory
distributed across the network in the case of the
10-board system, as shown in figure 6, and a
maximum processing power of 1.4 GIPS. The
absence of local external memory necessitates
compact algorithms for execution at audio
sampling rates and the use of a compact code
such as Occam, a programming language
designed specifically for the transputer family.

In the words of (Furber, 2017), the transputer
does not readily fall into either the CISC
(complex instruction set) or the RISC (reduced
instruction set) categories. It has a simple
instruction set, called Occam, and tends to be
viewed as a RISC processor. However, it is
much more than a RISC processor because of
the functionality built into the chip to support high
level concepts such as processes, timers, and
inter-process communication. Programmers
used to programming other microprocessors
may find programming the transputer to be a
strange experience (Bull, 2016). There is only a
small number of registers that are organized as
a stack, and all instructions are stack, rather than
register oriented. There is little concept of
condition codes, only limited instructions for
accessing memory, and more sophisticated
memory-addressing modes (Heath, 2014).

The language created by Inmos is the Ocam. It
was based on research by (He, Joseph and
Hoare, 2015) that described a mathematical
language called Communicating Sequencing
Processes (CSP). CSP describes the
interactions of processes interacting through the
exchange of signals or messages. In CSP, the
internals of a process are opaque, as are the
events. In occam, CSP processes are
implemented as tasks, and events as messages
communicated over one- to-one links. This

mapping retains an extremely important feature
of CSP: processes can be composed. For an
instance, if two processes x and y interact
together and with some environment, the
external behaviour can be modeled as a process
z. If y is replaced with another process
implementing its external behavior, you also end
up with z so long as x and y are composed.
Composition of processes is believed to be
essential to the ability to effectively design
systems. Consider how it would be if you had to
use a particular finger to switch on a light. In real
world, things do exhibit composition.

THE EFFACEMENT OF TRANSPUTER

The transputer invention was a realistic
implementation multiprocesses. It was intended
to provide high performance at low cost. The
main idea behind the transputer was quite
simple: instead of creating a very complex
processor, the transputer consisted of a family of
chips. Each chip had a very simple design and
multiple chips could be wired together to form an
entire computer. Each transputer chip was in fact
some kind of a microcontroller and was able to
boot and operate by itself, it had its own RAM, a
serial bus and an embedded real-time OS.

there were problems that promoted the
effacement of the transputer. These problems
birth the replacement of the transputer with
sophisticated approach to multiprocessing: the
Intel core microprocessors.

Occam was developed to specifically support
the development of the fine grained parallel
processing environments supported by the
transputer model and typical of those found in
embedded systems. It also supports extensive
checking of programs, threaded or not (Haefner,
2018).

FACTORS THAT PROMOTED THE
EFFACEMENT OF THE TRANSPUTER

There are ample number of factors, amidst the
pool of the transputer architecture applications
that militated against its permissive use through

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 9

the generations of computing processor. Some
of the major reasons are identified in this study.

 Computing Power Scalability

As the computing power increases overtime,
there came a need for a miniature architecture
which birth the microchips. The latching of
transistors became a bulky technology to be laid
on a mother board of a system. The idea of
developing a high speed processor with
compressed IC board became essential for the
growth of microprocessor speed. Also, since a
high computing power gained by the
combination of multiple transistors can be
replication in a small high speed
microprocessor, transputers application
diminished due to the large size of trasputers
network.

 Need for Superscalar Processing

According to (Denning and Lewis, 2017),
growing internal parallelism has been one
driving force behind improvements in
conventional CPU designs. Instead of explicit
thread-level parallelism, as is used in the
transputer, CPU designs exploited implicit
parallelism at the instruction-level, inspecting
code sequences for data dependencies and
issuing multiple independent instructions to
different execution units. This is termed
superscalar processing. Superscalar processors
are suited for optimising the execution of
sequentially constructed fragments of code.
Given these substantial and regular
performance improvements to existing code
there was little incentive to rewrite software in
languages or coding styles which expose more
task-level parallelism.

Unlike the transputer architecture, the
processing units in these systems typically use
superscalar CPUs with access to substantial
amounts of memory and disk storage, running
conventional operating systems and network
interfaces. Resulting from the more complex
nodes, the software architecture used for
coordinating the parallelism in such systems is

typically far more heavyweight than in the
transputer architecture (Agullo et al., 2017).

 The Inmos Patent Right Transfer

Inmos improved on the performance of the T8
series transputers with the introduction of the
T9000 (Haase and Pester, 2013). The T9000
shared most features with the T800, but moved
several pieces of the design into hardware and
added several features for superscalar support.

Long delays in the T9000's development meant
that the faster load/store designs were already
outperforming it by the time it was to be
released. It consistently failed to reach its own
performance goal of beating the T800 by a factor
of ten. When the project was finally cancelled it
was still achieving only about 36 MIPS at
50 MHz. The production delays gave rise to the
quip that the best host architecture for a T9000
was an overhead projector. This was too much
for Inmos, which did not have the funding
needed to continue development. By this time,
the company had been sold to SGS-Thomson,
now STMicroelectronics, whose focus was the
embedded systems market, and eventually the
T9000 project was abandoned (Clark, 2006).

When Inmos was sold to Thorn EMI under the
privatising Thatcher government in the mid-80s,
and later to SGS Thomson, Transputer
development continued, but was eventually
abandoned.

 Poor Memory Management Unit (MMU)

Another major problem of the transputer was the
lack of an MMU or virtual memory support, which
prevented UNIX to be ported to the transputer
architecture. Although there were ports of some
UNIX-like OSes.

 The Ocam Wane

The occam language, known as the transputer
language or instructions set, was though
hampered by the lack of compilers for other
chips, it waxed as real time systems developers
discovered its expressive power. However, as
the transputers lost their speed advantage
against other processors, people found them

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 10

less and less practical, and the use of occam
waned too.

 The Restoration Movement of
Transputer.

It was after Inmos was sold out that the idea of
Transputer restoration project came up. After the
termination of T9000 project, there was a
comprehensive redesigned 32-bit transputer
intended for embedded applications, the ST20
series, using some technology developed for the
T9000. The ST20 core was incorporated into
chipsets for set-top box and Global Positioning
System (GPS) applications. According to (May,
2005), ST20 was not strictly a transputer, but it
was heavily influenced by the T4 and T9 and
formed the basis of the T450, which was
arguably the last of the transputers.

The kernel of the idea to breathe life back into a
forgotten piece of British technological genius
was given by Paul Walker, of 4Links Ltd, who
worked with the Inmos Transputer in the early
days and took forward some of its design ideas
to help create SpaceWire, a serial
communication technology used throughout the
space industry (Chintalapati, 2016).

According to (Project Aims, n.d), the transputer
Restoration Project aims to bring into service
and maintain two fully functioning Inmos
Transputer Development System units. The first
unit contains 64 processors and runs a
demonstration of parallel processing of this
1980's technology using a Mandelbrot Set
generator and a Ray Tracing simulation. Also, a
system containing two banks of 12 processors
with dedicated video cards and monitors to drive
a dual flight simulator.

A longer term project is to restore a large system
based around a network of 100 T9000
Transputers that were originally used for fast
data capture at the European Organization for
Nuclear Research (CERN).

SUMMARY

The intention of this paper was to review and
summarize the era, and the idea of the
transputers technology which birth the

implementation of today
microprocessors.

We have looked at the basis of the transputer:
the elements of simplicity and in integration that
made it a useful and very powerful processor in
its own time. We noted here that the transputers
were designed to satisfy their original purposes.
We have also identified the occam language as
the instruction set of the transputer which Inmos
designed with the transputer to provide high
level access to these facilities.

We looked at how the transputer evolved and
addressed over the intervening past years, here,
we discussed the architectural design and the
network of transputers.

Some of the factors that contributed to the dead
end of the transputer legacy were identified. We
also discussed how these factors hindered the

 operations. Finally,
we reported that a transputer restoration project
to bring into service and maintenance two fully
functioning Inmos Transputer Development
System units.

REFERENCES

1. What is a transputer_ - Quora. (n.d.).

2.).
Evolutionary design of group communication
schedules for interconnection networks.
In International Symposium on Computer and
Information Sciences (pp. 472-481). Springer,
Berlin, Heidelberg.

3. Börger, E., & Stärk, R. (2012). Abstract state
machines: a method for high-level system design
And analysis. Springer Science &Business Media.

4.
Register. (n.d.).

5. Fox, G. C., Williams, R. D., & Messina, G. C.
(2014). Parallel computing works!. Elsevier.

6. Sheen, T., Allen, A. R., Ripke, A., & Woo, S.
(1998). oc-X: an optimizing multiprocessor occam
system for the PowerPC. In Architectures,
Languages and Patterns for Parallel and
Distributed Applications. IOS Press.

7. May, D. (2005). CSP, occam and Transputers.
In Communicating Sequential Processes. The
First 25 Years (pp. 75-84). Springer, Berlin,
Heidelberg.

Nzenwata Uchenna J et al., GJAI, 2019; 1:5

https://escipub.com/global-journal-of-artificial-intelligence/ 11

8. Hilton, C., & Ivimey, C. R. Legacy of the
transputer. emergence, 80186, 19.

9. Morse, H. S. (2014). Practical parallel computing.
Academic Press.

10. Nocetti, D. F. G., & Fleming, P. J. (2012). Parallel
processing in digital control. Springer Science &
Business Media.

11. Furber, S. B. (2017). VLSI RISC architecture and
organization. Routledge.

12. Bhowmick, A., & Prasad, C. G. V. N. (2017). Time
and cost optimization by grid computingover
existing traditional IT systems in business
environment. Int J, 5, 93-98.

13. Laplante, P., & Milojicic, D. (2016, Oct).
Rethinking operating systems for rebooted
computing. In 2016 IEEE International
Conference on Rebooting Computing (ICRC) (pp.
1-8). IEEE.

14. MATSUI, K. (2015). Towards Transputing with
Parallella!!.

15. Chertovskikh, A., & Rachek, I. (2014, Oct.). Using
Transputer Computing Systems at the
BudkerInstitute of Nuclear Physics. In Computer
Technology in Russia and in the Former Soviet
Union (SoRuCom), 2014 Third International
Conference on (pp. 86-88). IEEE.

16.

17. Haefner, J. W. (2018). Parallel computers and
individual-based models: an overview.
In Individual based models and approaches in
ecology (pp. 126-164). Chapman and Hall/CRC.

18. Manet, P., & Rousseau, B. (2016). "Tile-based
processor architecture model for high
efficiencyEmbedded homogeneous multicore
platforms." U.S. Patent No. 9,275,002.
Washington, DC: U.S. Patent and Trademark
Office.

19. Cohen, R., & Wang, T. (2014). Intel embedded
hardware platform. In Android Application
Development for the Intel® Platform (pp. 19-46).
Apress, Berkeley, CA.

20. Hass, D. T., Kuila, K., & Shahid, A. (2017). U.S.
Patent No. 9,596,324. Washington, DC:

U.S. Patent and Trademark Office.

21. Itagaki, T., Manning, P. D., Purvis, A., Purvis, A.,
Road, S., & Dh, D. (2018). Distributed Parallel
Learned from a 160- Transputer Network

21(4), 42 54.

22. Bull, M. (2016). Students' Guide to Programming
Languages. Elsevier.

23. Heath, S. (2014). Microprocessor Architectures:
RISC, CISC and DSP. Elsevier.

24. He, J., Josephs, M. B., & Hoare, C. A. R. (2015).
A theory of synchrony and asynchrony.

25. Denning, P. J., & Lewis, T. G. (2017). Exponential
laws of computing growth.

26. Agullo, E., Aumage, O., Faverge, M., Furmento,
N., Pruvost, F., Sergent, M., & Thibault, S.P.
(2017).Achieving high performance on
supercomputers with a sequential task-based
programming model. IEEE Transactions on
Parallel and Distributed Systems.

27. Haase, G., & Pester, M. (2013). A Brief History of
the Parallel Dawn in Karl-Marx Stadt/Chemnitz.
In Advanced Finite Element Methods and
Applications (pp. 1-26). Springer, Berlin,
Heidelberg.

28. Clark, I. (2006). Microprocessor Course Part I
Processor History and Selection.

29. Chintalapati, L. V. B. (2016). Integration of
Mission Control System, On-board Computer
Core and spacecraft Simulator for a Satellite Test
Bench.

30. Project Aims The National Museum of
Computing. (n.d.).

