Lifestyle Issues and Prevention of Recurrent UTIs

AK Mohiuddin, Treasurer

Dr. M. Nasirullah Memorial Trust, Tejgaon, Dhaka

ABSTRACT

UTI is one of the most prevalent diseases with diverse etiological agents annually affecting 250 million and causes death of 150 million people worldwide [1,2]. Adult women are 30 times more likely than men to develop a UTI [3]. Although the estimated mortality rate is generally lower than with RTIs, it may rise up to 26% if complicated with bacteremia or septic shock [4]. Financial burden of UTIs exceeds $3.5 billion in US alone [5] whereas more than 50% of the antibiotics prescribed for a suspected UTI in older adults being considered unnecessary [6]. More interestingly, nosocomial UTIs account for nearly 40% of all hospital acquired infections [7] and around 50% of UTI in children are missed [8]. Recurrent UTIs (RUTIs) are mostly caused by frequent sexual intercourse, heterosexual lack of circumcision receptive anal intercourse (without a condom), multiple sexual partners (each sex partner shares his/her UGT microbiota with the other), use of spermicide and a new sexual partner, sexual intercourse with addicted partners, sexual intercourse with sex workers, sexual intercourse with online dating friends, sexual intercourse with a new sex partner within less than 2 months [9-20]. Traditional lifestyle factors such as fluid intake and diet are not considered independent risk factors now [15]. UTIs account for nearly 25% of all infections [16]. Sexual intercourse ≥3 times/week was associated with greater frequency of UTI [21]. Close proximity of the urethral meatus to the anus and shorter urethra, is a likely factor [22-26]. Many other factors have been thought to predispose women to RUTIs, such as voiding patterns pre- and post-coitus, wiping technique, wearing tight undergarments, deferred voiding habits and vaginal douching; nevertheless, there has been no proven association [16]. Although, genital hygiene practices such as frequency of coitus, urinating after coitus, washing genitals precoitus, male partner washing genitals precoitus, washing genitals postcoitus, taking baths, frequent replacing of underwear, and washing genitals from front to back were associated with a reduced frequency of UTIs [21]. Low socioeconomic status, depression, anxiety, inadequate water intake, low educational status, anemia, catheterization, poor personal hygiene, poor access to condoms and other contraceptive devices, spermicide-coated condoms, poor access to qualified healthcare systems, high rate of family disruption, mental disorders are also risk factors [14], [28-45].
Catheter-associated-UTIs are common in more than 80% of all ICU patients with indwelling catheter (more than 1 million such cases found in US) [46,47] and should be avoided unless there is medically necessity [48]. Dietary habits seem to be an important risk factor for UTI recurrence dietary guidance could be a first step toward prevention [42,43], [46-57]. After anemia, UTIs are the second common complications in pregnant women [58]. The overall prevalence of bacteriuria in pregnant women was reported to be as high as 40% [2], [59-66] and up to up to 70% of pregnant women develop glycosuria which encourages bacterial growth in the urine [21]. Preventative measures such as drinking cranberry juice (urinary alkalization), OTC cystitis relief remedies or following certain hygiene behaviors, like wiping the genitals from front to back etc., were some of the measures that was suggested in different studies [5], [15,16], [21], [67-74] and also opposed/proven not much effective by other studies [75,76]. However, UTI prevention is necessary as renal scarring [77], low birth weight, neonatal UTI, preterm labor, preterm birth, hypertension, preeclampsia, septic shock, malformation or stillbirth, anorectal malformation and increased incidence of perinatal death are reported in several studies [2], [21],[58], [60,61], [78-96]. Circumcision, glycemic control in diabetes, avoiding spicy food, certain dairy products, sweet fizzy drinks, alcohol found helpful in individuals susceptible to UTIs [97-102].

Acknowledgement

I'm thankful to Dr. Ana L. Flores-Mireles, Department of Molecular Microbiology and Center for Women’s Infectious Disease Research, Washington University School of Medicine, Missouri, USA for her precious time to review my literature and thoughtful suggestions. Also, I’m also grateful to seminar library of Faculty of Pharmacy, University of Dhaka and BANSDOC Library, Bangladesh for providing me books, journal and newsletters.

Financial Disclosure or Funding: N/A

Conflict of Interest: The author declares that he has no competing interests.

Informed Consent: N/A

Author contributions: N/A

References

added risk factors among pregnant women in
Ambo town, Central Ethiopia: a cross-sectional
study. Antimicrobial resistance and infection
control, 6, 132. doi:10.1186/13756-017-0289-6
58. Amiri, M., Lavasani, Z., Norouzirad, R., Najibpour,
R., Mohamadpour, M., Nikpoor, A. R., … Zare
Infection Among Pregnant Women and its
Complications in Their Newborns During the Birth in
the Hospitals of Dezful City, Iran, 2012 - 2013.
Iranian Red Crescent medical journal, 17(8),
e26946. doi:10.5812/rcrmj.26946
59. Szewda H, Jóźwik M. Urinary tract infections
during pregnancy - an updated overview. Dev
PubMed PMID: 28216479.
60. Matuszkiewicz-Rówinska, J., Małyszko, J., &
pregnancy: old and new unresolved diagnostic
and therapeutic problems. Archives of medical
science : AMS, 11(1), 67-77.
doi:10.5114/aoms.2013.39202
61. Kalinderi K, Delkos D, Kalinderis M, Athanasiadis
A, Kalogiannidis I. Urinary tract infection during
pregnancy: current concepts on a common
association between urinary tract infection during
pregnancy and preeclampsia: A meta-analysis.
Medicine, 97(36), e12192.
doi:10.1097/MD.0000000000012192
systematic review of non-antibiotic measures for
the prevention of urinary tract infections in
pregnancy. BMC pregnancy and childbirth, 18(1),
64. Ailes, E. C., Summers, A. D., Tran, E. L., Gilboa,
S. M., Arnold, K. E., Meaney-Delman, D., &
Reefhuis, J. (2018). Antibiotics Dispensed to
Privately Insured Pregnant Women with Urinary
Tract Infections - United States, 2014. MMWR.
Morbidity and mortality weekly report, 67(1),
18-22. doi:10.15585/mmwr.mm6701a4
(2011). Epidemiology of urinary tract infections
and antibiotics sensitivity among pregnant women
at Khartoum North Hospital. Annals of clinical
care hospital. Indian J Health Sci Biomed Res;
48. Saint S, Greene MT, Krein SL, Rogers MA, Ratz
D, Fowler KE, Edson BS, Watson SR, Meyer-
Lucas B, Masuga M, Faulkner K, Gould CV,
Battles J, Fakih MG (2016). A Program to Prevent
Catheter-Associated Urinary Tract Infection in
10.1056/NEJMoa1504906. PubMed PMID:
27248619.
49. Tero Kontiokari, Jaana Laitinen, Leea Järvi, Tytti
Pokka, Kaj Sundqvist, Matti Uhari (2003). Dietary
factors protecting women from urinary tract
infection, The American Journal of Clinical
Nutrition, Volume 77, Issue 3, Pages 600–604,
https://doi.org/10.1093/ajcn/77.3.600
of urinary tract infection: II. Diet,
clothing, and urination habits. American journal
of public health, 75(11), 1314–1317.
doi:10.2105/ajph.75.11.1314
urinary tract infections: a new paradigm for
antimicrobial-resistant foodborne illness.
Frontiers in microbiology, 4, 29.
52. Manges AR, Smith SP, Lau BJ, Nuval CJ,
Eisenberg JN, Dietrich PS, Riley LW. Retail meat
collection and the acquisition of antimicrobial
resistant Escherichia coli causing urinary tract
infections: a case-control study. Foodborne
PMID: 18041952.
53. Kontiokari T, Laitinen J, Järvi L, Pokka T,
Sundqvist K, Uhari M (2003). Dietary factors
protecting women from urinary tract infection. Am
J Clin Nutr;77(3):600-4. PubMed PMID:
12600849.
attributed to diverse ExPEC strains in food
animals: evidence and data gaps. Frontiers in
microbiology, 6, 28.
doi:10.3389/fmicb.2015.00028
55. Soraas, A., Sundsfjord, A., Sandven, I., Brunborg,
community-acquired urinary tract infections
caused by ESBL-producing enterobacteriaceae--
a case-control study in a low prevalence country.
PloS one, 8(7), e69581.
doi:10.1371/journal.pone.0069581
56. Kalas V, Hibbing ME, Maddirala AR, Chugani R,
Pinkner JS, Mydock-McGrane LK, Conover MS,
discovery of glycomimetic FmH ligands as
inhibitors of bacterial adhesion during urinary tract
infection. Proc Natl Acad Sci U S
A;115(12):E2819-E2828. doi:
10.1073/pnas.1720140115.
57. Gessese, Y. A., Damessa, D. L., Amare, M. M.,
Bahra, Y. H., Shifera, A. D., Tasew, F. S., &
bacterial profile, antibiogram of isolates and
associated risk factors among pregnant women in
Ambo town, Central Ethiopia: a cross-sectional
study. Antimicrobial resistance and infection
control, 6, 132. doi:10.1186/s13756-017-0289-6
microbiology and antimicrobials, 10, 2. doi:10.1186/1476-0711-10-2

