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Deciphering the longevity of the mole-rats

A theoretical model of a nonlinear network that outlines the gen-
eral aspects of mole-rat resistance to age-related diseases, such 
as cancer and the action of ROS was elaborated. According to 
our conjecture, it was shown that the protection is established 
because hyaluronic acid of high molecular mass forms a non-lin-
ear network of interactions. That network leads to self-organiza-
tion away from the thermodynamical equilibrium, which appears 
through a “first order” phase transition as a supercritical bifurca-
tion of Andronov-Hopf type. Finally, it is shown how the rate of 
entropy production is a Lyapunov function of the dynamics of the 
process.
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1. Introduction 

Longevity and aging remain one of the most 

captivating and intriguing topics of human 

knowledge. Despite all the achievements in the 

biomedical sciences, the mechanism for aging 

processes is still very unknown. 

Mole-rats represent an ideal model for the 

study of the aging process [1], as well as, to 

understand the so-called degenerative 

diseases such as cancer [2, 3]. As a fact, the 

journal Science named the naked mole-rat 

"Vertebrate of the Year" for 2013 [2]. 

The mole-rat is the longest known living rodent 

and is a unique model of successful aging that 

shows attenuated decreases in most 

physiological functions [4]. In addition to their 

longevity, mole rats show unusual resistance to 

cancer [1]. More than this, the mole rat can 

tolerate high levels of oxidative stress and have 

mechanisms to prevent age-related diseases, 

such as cancer, diabetes, and cardiovascular, 

brain, and liver diseases, as well as many 

infections [5, 6, 7]. 

The question that has puzzled the scientific 

community for decades is: Why does the 

human being, the mouse and the rat develop 

cancer, but the mole rats do not or rarely do it? 

It is well known that there are multiple factors 

that influence the biology of cancer [8] and 

aging [9]. Therefore the mole rat is an 

appropriate animal model, because of the 

mechanisms they possess to reach a greater 

longevity, resistance to hypoxia and to cancer. 

These mechanisms could be taken as a 

reference for studies of human cancer and 

degenerative diseases [1, 2, 3]. 

The aim of this work is to show, through a 

simple theoretical model, the mechanism of 

resistance of the mole rat to age-related 

diseases such as cancer and the action of 

ROS. For this we establish as conjecture that: 

Protection is established because hyaluronic 

acid of high molecular mass ( HA ) conforms a 

non-linear network of interactions that lead to 

self-organization outside the thermodynamical 

equilibrium. 

The paper is organized as follows: in Section 2 

we propose a non-linear network model. 

Section 3 focuses on the analysis of the 

ordinary differential equations model derived 

from the previously proposed mechanism, 

including quantitative simulations and stability 

analysis. The development of a thermodynamic 

framework, based on the rate of entropy 

production is presented in Section 4. Finally, 

some comments and remarks are presented. 

2. A nonlinear network model of mole-rat 

Xiao Tian et al. [10] found that naked mole rat 

fibroblasts secrete high molecular weight 

hyaluronan ( HA ), which is five times larger 

than the human or the mouse. High molecular 

weight hyaluronan accumulates abundantly in 

mole rat tissues due to the decreased activity of 

degrading enzymes and a unique sequence of 

hyaluronan synthase 2 (HAS2). In addition, 

mole rat cells are more sensitive to signaling, 

since naked mole rat cells have a higher affinity 

than those of the mouse or the human cells. 

It is well known that mole rats live in conditions 

of hypoxia [11] and that they tolerate extreme 

conditions such as anoxia [12]. During chronic 

hypoxia, high levels of reactive oxygen species, 

ROS, are induced, which may be associated 

with a normal physiological response to the 

imbalance in oxygen supply and demand or 

environmental stress [13]. The hypoxia 

inducible factor, HIF, is a transcription factor 

that regulates the cellular response to hypoxia 

and acts as a regulator of oxygen homeostasis 

[14]. The system of HIF transcription [14] and 

hypoxia are the major determinants in 

angiogenesis and regulate, for instance the 

processes of tumor invasion. 

Chronic hypoxia inevitably leads to an increase 

in glucose uptake and the accumulation of its 

metabolites; consequently, hyaluronic acid will 

be degraded by some hyaluronidases (HYAL1-

6) or by ROS in fragments of different sizes 

[15]. These low molecular weight hyaluronic 

acid fragments serve as tissue repair signals, 
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including signals of cell proliferation, cell 

survival and angiogenesis, which lead to the 

initial proliferation of the underlying cells [16]. 

It is well known that the mole rat can tolerate 

high levels of oxidative stress [17] and exhibits 

a high resistance to cancer [18, 5] due to its 

capacity in the production of high molecular 

weight hyaluronic acid [10]. In fact, it has been 

found that ROS levels in moles are lower 

compared to rats [19]. 

Based on what was discussed above, an 

integrated framework according to the network 

structure shown in Figure 1 is proposed. 

 

Fig. 1. The nonlinear network model of mole-rat 

In the model, A  represent the oxygen 

concentration, B , the high molecular weight 

hyaluronan ( HA ) concentration, which is taking 

as the control parameter, x  are the 

concentration of ROS spices, y  are the 

concentrations of the low molecular weight HA ,  

z  are the populations of the cancer cells and  

ncp  represent the concentration of the non-

cancer products. 

Step 1 is related to the auto-catalytic formation 

of reactive ROS oxygen species, ( x ) because 

chronic hypoxia induces high level of ROS [13]. 

Step 2 shows the degradation of the hyaluronic 

acid by ROS in fragments of different sizes ( y ) 

[15]. Step 3 shows the formation of tumor cells 

( z ) from fragments of different sizes of 

hyaluronic acid [16]. Step 4 shows the spread 

of the tumor promoted by the action of ROS 

[20]. Finally, step 5, outlines the protective 

action of high molecular weight of hyaluronic 

acid ( B ) [11]. Considering that the high 

molecular weight accumulates abundantly in 

mole-rat tissues [11] we take as the control 

parameter. 

The constants for the model proposed (see Fig. 

1) were chosen empirically trying to have a 

greater generality and simplicity as possible, so 

we have: 

1 4.7 ml/(mmol s)k = , 2 1 ml/(mmol s)k = ,
-1

3 1 sk = ,

4 1 ml/(mmol s)k = ,
5 2 ml/(mmol s)k = . 

3. Mathematical model, stability analysis 

and numerical simulations 

Mathematical models represent an adequate 

way to formalize knowledge of living systems 

obtained through a Systems Biology approach 

[21, 22]. These types of models make possible 

the description of important regularities and are 

useful to provide effective guidelines for the 

development of therapies, drugs and clinical 

decision making. 

The network model (Fig. 1) we propose is a 

qualitative representation of the action of high 

molecular weight hyaluronan ( HA ) 

concentration. We use the mathematical 

methods of chemical kinetics to reduce the 

network to a system of ordinary differential 

equations such as 

 

4.7 B

B

2 B

dx
xA xz x

dt

dy
x y

dt

dz
y z

dt

= − −

= −

= −

                                                                                             

(3.1) 

Quantitative value for each constant has been 

empirically obtained. Fixed points, stability and 

bifurcations analysis were calculated using the 

standard procedure [23,24,25]. Control 

parameters were represented by the high 

molecular weight HA  accumulates abundantly 

in mole-rat tissues [11]. The corresponding 

stationary state is: 

247 47 47
5 5 10

2B, B 2B , Bss ss ssx A y A z A= − = − = −                                                           

(3.2) 

The characteristic equation as a function of the 

eigenvalues  is 
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( ) ( )3 2 47
5

2B 1 2B B 2B A  + + + − −                                                                               

(3.3) 

and we find that the periodic oscillations occur 

product of a supercritical Andronov-Hopf 

bifurcation [23], where the critical value of the 

control parameter is obtained from the following 

equation: 

B 1.5667 0.33333c A= −                                                                                                    

(3.4) 

For hypoxia condition, 1A = , is obtained that: 

1.2334cB = . For simulating network model, 

COPASI v. 4.6.32 software was used. In Fig. 2 

is shown the dynamic behavior for the system 

(3.1). 

 

 

Fig. 2. Time series of the proposed model (see Fig.1) for different values of the control parameter 

B : a. B B 1.5c = , b. B B 1.23c = , c. B B 1.2c = ; x (red), y (blue); z (green). 

 

As observed, for the value of B B 1.5c = (see 

Fig.2a) a stationary stable state appears, which 

guarantees low levels of ROS ( x ) and the 

tumor cells ( z ). For values of B B 1.23c =  (see 

Fig.2b) due to the supercritical Andronov-Hopf 

bifurcation appear periodic oscillations and the 

same phenomenology observed in Fig.2a is 

here maintained. 

This dynamic behavior leads to self-

organization outside the thermodynamic 

equilibrium. At macroscopic scales, the self-

organization and the complexity exhibited by 

dynamic systems are manifested through 

oscillations in time and / or space. In biological 

systems, these oscillations are usual [26], and 

they do not only guarantee robustness [27], but 

also allow the system to perform various 

functions, including control and regulation. 

In Fig.2c, it is observed that a small decrease in 

the concentration of B  ( B B 1.2c = ), leads to 

an increase in the concentration of ROS 

species ( x ), which suggests that the 

robustness of the action of HA  not only comes 

given that there is a critical concentration 
cB  of 

HA  that guarantees self-organization, but also 

that there must be a fine regulation of it. 

4. Thermodynamics framework 

As we know from thermodynamics irreversible 

processes [28] for a chemical reaction the 

entropy production can be evaluated as: 

                                                      (4.1) 
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where A , according to De Donder and Van 

Rysselberghe [29], represents the affinity and 

the term  is the reaction rate. The formula 

(4.1) could be rewritten [30] for the  k-th 

reaction as 

                       (4.2) 

Where   are the forward and 

backward reaction rates respectively. The 

whole entropy production rate  for the 

network model (Fig.1) can be evaluated as 

                                             (4.3) 

In a previous work [31] we have shown that the 

rate of entropy production is a Lyapunov 

function, in fact we extended this formalism to 

the development of cancer [32, 33, 34, 35, 36, 

37]. Thus, we have the entropy production per 

unit time meets the necessary and sufficient 

conditions for Lyapunov function [30], such that 

                                                          (4.4)                                                                                                                                         

where   is the vector of control parameters. 

The Eulerian derivative (4.4) must hold: 

;                                               (4.5)                                                                                                

where   ( )B  is related with concentration 

of high molecular weight hyaluronan. Taking 

into account (4.2) and (4.3), we can write the 

whole entropy production rate  for the 

network model (Fig.1) as a function of control 

parameter B  as 

 (4.6) 

Then it fulfills that 

      (4.7) 

As the control parameter B  is a concentration 

of high molecular weight hyaluronan a reactant, 

such as: 
B

0
d

dt
 , then it fulfills that: ,  that 

allows us to affirm that the rate of entropy 

production is a Lyapunov function.                                                                               

5. Conclusions and remarks 

The network model proposed for the mole rat 

generalizes, at least qualitatively, the main 

characteristics of the regulatory action of high 

molecular weight hyaluronic acid, as well as the 

resistance of age-related diseases such as 

cancer and the action of ROS. 

In summary, in this paper we arrive at the 

following theoretical conclusions: 

• It was shown, according to our 

conjecture, that the protection that the 

moles rats have is established because 

the high molecular weight hyaluronan 

conforms to the nonlinear network of 

interactions that lead to self-organization 

far from thermodynamical equilibrium 

and behaves according to the rules of a 

"first order” phase transition through a 

supercritical bifurcation of Andronov-

Hopf type. In other words, oscillations 

grant high robustness and complexity. 

• There must be a critical concentration of 

the high molecular weight of hyaluronic 

acid, such that it guarantees the self-

organization and a fine regulation of the 

process. 

• With the hyaluronic acid as the control 

parameter of the system, it was shown 

that the rate of entropy production is a 

Lyapunov function. That is, it provides 

the directionality of the process 

We hope that the current theoretical framework 

will provide a better understanding of aging 

processes and cancer and will contribute to 

improving the duration of human health, 

longevity, as well as the search for optimal 

pathways for future treatments. 
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