Review Article IJOAR (2019) 2:34 ## International Journal of Aging Research (ISSN:2637-3742) # Whey Protein Supplementation as a Strategy to Preserve Muscle Mass and Increase Protein Synthesis in the Elderly: a Review of Literature Celine de Carvalho Furtado¹; Império Lombardi Jr² ¹PhD student in Interdisciplinary Postgraduate Program in Health Sciences - Federal University of São Paulo (UNIFESP) - Baixada Santista Campus; teacher and researcher in CENTRO UNIVERSITÁRIO LUSÍADA; ²Professor in Department of Human Movement Science -Federal University of São Paulo (UNIFESP) - Baixada Santista Campus; #### **ABSTRACT** INTRODUCTION: Aging often coincides with loss of muscle mass, strength and function, known as sarcopenia. Sarcopenia, a geriatric syndrome closely linked to physical frailty, has a substantial impact on the quality of life. Inadequate dietary intake, especially protein intake, has been associated with decreased lean body mass. Dietary protein affects muscle mass by the stimulation of muscle protein synthesis after absorption of amino acids into muscle cells AIMS: Verify the effectiveness of whey protein supplementation in increasing protein synthesis and muscle mass in elderly. METH-**ODS**: This is a systematic review conduced in the pubmed database, which sought clinical trials published between 2012 and 2016, with the combination of descriptors: Whey protein, muscle mass, protein synthesis, sarcopenia. RESULTS: We found 30 articles and after exclusion of non-relevant issues and duplicate articles were included 11 articles in this study. Of the selected material. 3 studies did not find positive effects with supplementation, this null response could have occurred because of dose and/or timing of supplementation, 1 study found the same effect with leucine supplementation and 7 studies found positive effects with whey protein supplementation for the protein synthesis and the increase of lean body mass in the elderly. CONCLUSIONS: Therefore, we can conclude that supplementation of whey protein shows positive results for increased protein synthesis and muscle mass in the elderly. However, the results differ between the sexes, quantity and timing of consumption, which after the need of new studies for the best understanding of the subject. It seems that the elderly respond best to higher amounts of supplement and the periods more distant from the practice of resistive exercise. In addition, after reviewing the articles it appears that men present better results than women do. The results give us another option to maintain the independence and quality of the elderly. **Keywords:** Sarcopenia, Muscle mass, Whey protein, Protein synthesis. #### *Correspondence to Author: Celine de Carvalho Furtado PhD student in Interdisciplinary Postgraduate Program in Health Sciences - Federal University of São Paulo (UNIFESP) - Baixada Santista Campus; teacher and researcher in CENTRO UNIVERSITÁRIO LUSÍADA: #### How to cite this article: Celine de Carvalho Furtado, Império Lombardi Jr. Whey Protein Supplementation as a Strategy to Preserve Muscle Mass and Increase Protein Synthesis in the Elderly: a Review of Literature. International Journal of Aging Research, 2019, 2:34 #### INTRODUCTION Based on demographic extrapolations, the number of elderly citizens above the age of 65 years will increase in the next three decades by 50–200 %, with the specific proportion being dependent on country (National Institute on Aging, National Institutes of Health (NIH), World Health Organization, 2011). Aging often coincides with loss of muscle mass, strength and function, known as sarcopenia. Sarcopenia, a geriatric syndrome closely linked to physical frailty, has a substantial impact on the quality of life of the individual and increases the risk of disability and hospitalization (Cruz-Jentoft, A. J, et al, 2010). Sarcopenia takes place at an annual rate of up to 1-2 % starting in the sixth decade of life (Janssen I, Heymsfield S. B., Wang Z. M., Ross R., 2000). The impact of sarcopenic progression may detrimental to an individual's personal life and autonomy, and the societal implications are vast when one considers future healthcare and nursing expenditures (Bechshøft, R., L., et al, 2016). Because of the aging muscle becoming less sensitive to daily anabolic stimuli due to protein intake and muscular activity, it is suggested that exactly these two factors possess a high potential to antagonize sarcopenia (Moore, D.R., et al, 2015). Inadequate dietary intake, especially protein intake, has been associated with decreased lean body mass (Wolfe, R.R, Miller, S. L, Miller, K.B, 2008). Dietary protein affects muscle mass by the stimulation of muscle protein synthesis (MPS) after absorption of amino acids into muscle cells (Houston, D. K, et al, 2008). This brief increase in MPS above post absorptive rates serves the purpose of replenishing protein stores lost during fasting, ensuring preservation of muscle protein mass (Chalé, A, et al, 2013). With regard to protein intake, cohort studies strongly suggest an association between high protein intake and decreased rates of age-dependent decline in physical performance and reduced risk of frailty (Beasley, J.M, Shikany J.M, Thomson C.A., 2013). Whey protein, a fast-acting protein that is quickly digested and becomes fast-absorbing peptides and amino acids, can potentially be the most effective in maintaining adequate anabolic/catabolic balance in the musculature of elderly individuals (Molnár, A., et al., 2016). Research has shown a superiority of whey protein in enhancing muscle protein synthesis compared with other protein sources in older adults (Devices, M.C., et al, 2015; Burd, N.A., et al, 2012). The purpose of study was verify the effectiveness of whey protein supplementation in increasing protein synthesis and muscle mass in elderly. #### **METHODS:** This is a review conduced in the pubmed database, which sought clinical trials published between 2012 and 2016, with the combination of descriptors: Whey protein, muscle mass, protein synthesis, sarcopenia. <u>Inclusion criteria:</u> Be published in English; With humans; Age more than 65 years. <u>Exclusion criteria:</u> Not full text; Disabling diseases; Chronic obstructive pulmonary disease. #### **RESULTS** We found 30 articles, after exclusion of nonrelevant issues and duplicate articles were included 11 articles in this study which are described in table 1 #### **DISCUSSION** As demonstrated in results, we can verify that only 4 researches (Burd, N.A, et al 2012; Chalé, A, et al, 2013; Arnarson, A., et al, 2013; Zhu, K., et I, 2015) did not find positive effects for the gain of muscular mass in the elderly with the supplementation of whey protein. Some of these results can be explained for the low dose used in some of them (20g.), or the timing for supplementation (immediately of exercise). ### Table 1: Articles included in study | Authors/ year | Design of study | Characteristics of participants | Interventions | Variables of interesting | Conclusions | |--------------------------------|---|--|--|--|--| | BURD, N.A, et al
2012 | Clinical trial | 14 elderly men | 1 session of Resistance
exercise,
supplementation of 20g of
micellar casein or isolated
whey protein | Myofibrillar protein synthesis | The ingestion of isolated whey protein supports greater rates of myofibrillar protein synthesis than micellar casein. | | CHALÉ, A, et al,
2013 | Clinical trial,
double blind,
controlled | 80 older adults
with mobility-
limited | 6 months of progressive resistance training, 3 times a week, 40g of whey protein concentrated or an isocaloric drink, in 2 times a day (morning and evening) | Lean mass, mid-thigh
muscle cross-sectional
area, muscle strength
and stair-climbing
performance | They suggest the whey protein concentrated supplementation at this dose not offer additional benefit to the effects of resistance training. | | COKER, R. H. et al, 2012 | Clinical trial,
randomized | 12 Males and
females, 65-80
years, obese | Caloric-restriction (7% weight loss), Whey protein + essential amino acid supplementation or competitive meal replacement, 5 times/day for 8 weeks | Biopsies of the vastus
lateralis, Skeletal muscle
protein synthesis | Whey protein + essential amino acids during a caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and modest loss of lean tissue. | | ARNARSO
N, A., et al, 2013 | Clinical
trial, randomized,
controlled,
double-blind | 161 men and
women, 65-91
years | 12 weeks of resistance exercise program, 3 times a week and supplementation of 20g of whey protein or isocaloric carbohydrate | Body
composition (DEXA),
physical function,
Strength, dietary intake | The ingestion of 20g of whey protein immediately resistance exercise, not lead to greater gains in lean body mass, strength and physical function in elderly with sufficient energy and protein intake. | | LUIKING, Y. C, et al, 2014 | Clinical trial, randomized, controlled, double-blind | 20 older adults, > 60 years | 1 session of unilateral leg resistance exercise protocol, supplementation of 1 single dose of 200 ml of a high whey protein, leucine-enriched or a isocaloric drink (milk) | Body composition
(DEXA), muscle
biopsies, muscle protein
synthesis | Ingestion of a high whey protein, leucine-enriched supplement resulted in a larger overall postprandial muscle protein synthesis rates. | | BUKHARI, S. S. I., et al, 2015 | Clinical trial | 16
postmenopausal
women, > 65
years | 1 session of resistance
exercise at 75% of their
predetermined 1-RM
using the dominant leg | Body composition
(DEXA), Appendicular
muscle mass, Skeletal
muscle index, biopsies | The findings show that low dose Intriguingly though, bolus of whey protein offers no trophic advantage over Leucine essential amino acid. LE.A.A supplementation have potential as strategies for older women to enhance muscle maintenance. | | KIRN, D. R., et al, 2015 | Multi-center,
clinical trial,
randomized,
double blind | Males and
Females, >70
years, BMI > 35
kg/M20 | 6 month exercise program 3 times a week and supplementation of once daily 20g whey protein drink with 800 UI of Vitamin D or Low calorie placebo drink | 400 meter walk time in mobility-limited older adults | better average gait
speed during the 400m
walk | Celine de Carvalho Furtado and Império Lombardi Jr, IJOAR, 2019 2:34 | BAUER, J. M., et al, 2015 | Multi-center,
clinical trial,
randomized,
double blind,
placebo-
controlled | 380 sarcopenic
primarily, with
mobility
limitations, > 65
years, men and
women | supplementation 20g whey protein with 3g leucine and 800 UI vitamin D or isocaloric drink control with only carbohydrates, to consumed in 2 doses a day (before breakfast and lunch) for 13 weeks | handgrip strength,
physical function,
skeletal muscle mass
index, | the group with whey protein supplementation obtained improvements in muscle mass and lower-extremity function among sarcopenic older adults. | |--------------------------------|--|---|--|---|---| | ZHU, K., et I,
2015 | Clinical trial,
randomized,
double-blind,
placebo-
controlled | 219
postmenopausal
women, 70-80
years | supplementation with
high whey protein drink
(30g) or placebo drink low
in protein, 1 dose a day
for 2 years | Body composition
(DEXA), handgrip
strength, lower limb
muscle strength, time up
and go, 24h urinary
nitrogen | extra 30g/day did not improve the maintenance of muscle mass or physical function in healthy older postmenopausal women. | | KRAMER, I. F., et al, 2015 | Clinical trial,
randomized,
double-blind | 45 nonsarcopenic older men, | supplementation with 21g leucine-enriched whey protein with carbohydrate or leucine-enriched whey protein without carbohydrate or a isocaloric with no protein or a.a. | gait speed, handgrip-
strength, body-
composition (DEXA),
BMI | the leucine-enriched whey protein with no carbohydrate significantly raises muscle synthesis rate in nonsarcopenic older men. | | RONDANELLI,
M., et al, 2016 | Clinical trial, randomized, double-blind, placelo-controlled | 130 sarcopenic,
men and
women, > 65
years | 12 weeks of a comprehensive physical fitness and muscle mass enhancement training program and supplementati on with 32g amino-acid, whey protein and vitamin d mixture or an isocaloric placebo (maltodextrin) | body-composition (DEXA), muscle strength, blood biochemical index of nutrition, physical function, global nutrition status an quality of life | Supplementation with whey protein, aminoacids and vitamin D, in conjunction with ageappropriate exercise, not only boosts fat-free mas and strength but also enhances like physical function and quality of life, contributing to well-being in sarcopenic elderly. | According Paddon-Jones D., Rasmussen B. B, (2009) to counteract protein catabolism, the elderly must increase the anabolic stimulus, consuming 30 g protein/meal. With advancing age, an impaired and/or delayed response to the anabolic effects of hyperaminoacidemia and resistance exercise has been seen (Chuchward-Venne T., Murphy C. H, Longland T. M, Phillips S. M., 2013; Kumar V., et al 2009). Although some authors mentioned positive effects of whey protein supplementation in the elderly without the presence of physical exercises (Bauer, J. M., et al, 2015), other studies investigating protein supplementation in combination with exercise have been mixed (Kukuljan, S., et al.). In the 7 positive results we can verify that whey protein was responsible for a greater loss of body fat and improved preservation of muscle mass, in an obese elderly group (Coker, R.H., et al 2012). A recently meta-analyses demonstrate favorites results for reduction of fat mass, comparing groups controls and groups with whey protein supplementation (Wirunsawanya, K., et al., 2017), protein source is an important factor in the success of these weight-loss interventions. For example, ingestion of whey protein throughout the day, along with an ad libitum diet independent of caloric restriction, may mediate the increased satiety enhanced body weight loss and composition changes compared with isoenergetic soy or carbohydrate (CHO) (Baer D., et al, 2011), additionally, recent findings provide compelling, new data in support of beginning and ending the day with a 20- to 30-g protein feeding to reduce abdominal fat and favorably alter adipokines (Arciero, P.J., et al, 2013). Verreijen, A.M., et al. (2015), concludes the whey protein supplementation can reduce fat free mass loss due to low-calorie diets and prevent sarcopenia in obese adults. Whey protein supplementation also increased muscle mass, functionality, strength besides reducing inflammatory markers and catabolic mediators (Kirn, D. R., et al, 2015, Bauer, J. M., et al, 2015 and Rondanelli, M., et al, 2016), a growing body of evidence supports an enhanced rate of protein synthesis (muscle and whole body) from protein ingestion at rest and during exercise (Kanda A, et al, 2013; Tang J, Moore D., 2009), Kirsten E. Bell, et al, (2017) also reported that consumption of a whey multi-ingredient protein-based, supplement resulted in significant gains in muscle strength and lean mass. Pal S, Ellis V, also demonstrated it, (2010) a reduction of pro-inflammatory cytokines may be associated with reduction of body weight gain after consumption of whey protein and it amino acids. Finally when was compared whey protein with E.A.A, in regards to improved muscle strength and functionality, whey protein was more effective (Luiking, Y. C, et al, 2014 and Kramer, I. F., et al, 2015). Cruz-Jentoft, A.J, Morley J.E, Ebrary, I., 2012 and Makanae Y, Fujita S., 2015 reported that leucine also can activate the mTORC1 signaling pathway to increase the rate of MPS and hypertrophy. #### **CONCLUSIONS** Therefore. conclude we can that supplementation of whey protein shows positive results for increased protein synthesis and muscle mass in the elderly. However, the results differ between the sexes, quantity and timing of consumption, which after the need of new studies for the best understanding of the subject. It seems that the elderly respond best to higher amounts of supplement and the periods more distant from the practice of resistive exercise, which is attributed to the process of anabolic resistance present in individuals of this age. In addition, after reviewing the articles it appears that men present better results than women do. The results give us another option to maintain the independence and quality of the elderly. Further studies should be done in this specific population so that we can have all the answers about this effect and the safety of the product. **ACKNOWLEDGMENTS:** capes for funding the research; UNIFESP for opportunity of Phd; UNILUS for professional opportunity. #### **CONFLITE OF INTEREST:** not disclose. #### REFERENCES - ARCIERO P.J., et al. Increased protein intake and meal frequency reduces abdominal fat during energy balance and energy deficit. Obesity (Silver Spring) 21: 1357–1366, 2013. - ARNARSON, A. et al. Effects of whey proteins on the results of resistance training in elderly people: double blind, randomized controlled trial. European Journal of Clinical Nutrition (2013), 1–6. - 3. BAER D., et al. Whey protein but not soy protein supplementation alters body weight and composition in free-living overweight and obese adults. J Nutr 141: 1489–1494, 2011. - BAUER, J. M., et al. Effects of a Vitamin D and Leucine-Enriched Whey Protein Nutritional supplement on Measures of Sarcopenia in Older Adults, the PROVIDE Study: A Randomized, Double-Blind, Placebo-Controlled Trial. JAMDA 16 (2015) 740e747. - BEASLEY J.M, SHIKANY J.M, THOMSON C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr Clin Pract. 2013; 28:684–90. - BECHSHØFT, R., L., et al. Counteracting Agerelated Loss of Skeletal Muscle Mass: a clinical and ethnological trial on the role of protein supplementation and training load (CALM Intervention Study): study protocol for a randomized controlled trial. Trials (2016) 17:397. DOI 10.1186/s13063-016-1512-0 - 7. BUKHARI S. S. et al. Intake of low-dose leucinerich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. *Am J Physiol Endocrinol Metab* 308: E1056–E1065, 2015. doi:10.1152/ajpendo.00481.201 - 8. BURD N.A., et al. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and - after resistance exercise in elderly men. *Br. J. Nutr.* 108: 958–62, 2012. - CHALE A., CLOUTIER G.J., HAU C., PHILLIPS E.M., DALLAL G.E., FIELDING R.A. 2013. Efficacy of whey protein supplementation on resistance exercise-induced changes in lean mass, muscle strength, and physical function in mobility-limited older adults. J Gerontol A Biol Sci Med Sci. 68:682–690. - COKER et al. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutrition Journal 2012, 11:105. - 11. CRUZ-JENTOFT A.J, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. European Working Group on Sarcopenia in Older People. Age Ageing 2010;39:412–23. - 12. CRUZ-JENTOFT A.J, MORLEY J.E, EBRARY I. Sarcopenia. Hoboken, N.J;Chichester, West Sussex;: Wiley-Blackwell; 2012. - DEVRIES MC, et al. Low-load resistance training during step-reduction attenuates declines in muscle mass and strength and enhances anabolic sensitivity in older men. Physiol Rep. 2015;3(8):e12493. - HOUSTON D.K., et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr 2008;87:150–5. - JANSSEN I, HEYMSFIELD SB, WANG ZM, ROSS R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol. 2000; 89: 81–8. - KANDA A, et al. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. Br J Nutr 110: 981–987, 2013. - KIRN, D. R et al. The Vitality, Independence, and Vigor in the Elderly 2 Study (VIVE2): Design and methods. Contemporary Clinical Trials 43 (2015) 164–171. http://dx.doi.org/10.1016/j.cct.2015.06.001. - KRAMER et al. Impact of the Macronutrient Composition of a Nutritional Supplement on Muscle Protein Synthesis Rates in Older Men: A Randomized, Double Blind, Controlled Trial. J Clin Endocrinol Metab, November 2015, 100(11):4124–4132 doi: 10.1210/jc.2015-2352. - 19. KIRSTEN E. Bell, et al. A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial. PLoS One. 2017; 12(7): e0181387. Published online 2017 Jul 18. doi: 10.1371/journal.pone.0181387 - 20. KUMAR V, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. *J. Physiol.* 587: 211–7, 2009. - 21. KUKULJAN S., et al. Effects of resistance exercise and fortified milk on skeletal muscle mass, muscle size, and functional performance in middle-aged and older men: an 18-months randomized controlled trial, J. Appl. Physiol. 107 (6) (2009) 1864–1873. - 22. LUIKING Y.C., DEUTZ N.E., MEMELINK R.G., VERLAAN S., WOLFE R.R. 2014. Postprandial muscle protein synthesis is higher after a high whey protein, leucine-enriched supplement than after a dairy-like product in healthy older people: a randomized controlled trial. Nutr J. 13:1475— 2891. - 23. MAKANAE Y, FUJITA S. Role of Exercise and Nutrition in the Prevention of Sarcopenia. J Nutr Sci Vitaminol 2015;61 S125. - 24. MOLNÁR, A, et al. Special nutrition intervention is required for muscle protective efficacy of physical exercise in elderly people at highest risk of sarcopenia. Physiology International, Volume 103 (3), pp. 368–376 (2016) DOI: 10.1556/2060.103.2016.3.12 - 25. MOORE D.R., et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J Gerontol A Biol Sci Med Sci. 2015; 70:57–62. - 26. NATIONAL INSTITUTE ON AGING, NATIONAL INSTITUTES OF HEALTH (NIH), WORLD HEALTH ORGANIZATION. Global health and aging. NIH Publication 11-7737. Washington, DC: NIH; October 2011. http://www.who.int/ageing/publications/global_health.pdf. Accessed 27 Jul 2016. - 27. PADDON-JONES D., RASMUSSEN B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr Opin Clin Nutr Metab Care 2009;12:86–90. - 28. PAL S, ELLIS V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity (Silver Spring) 2010, 18:1354–1359. - 29. TANG J, MOORE D. Ingestion of whey hydrolysate, casein, or soy protein isolate: effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J Appl Physiol 107: 987–992, 2009. - 30. VERREIJEN A.M., et al. A high whey protein, leucine, and vitamin D-enriched supplement preserves muscle mass during intentional weight loss in obese older adults: a double-blind randomized controlled trial. Am J Clin Nutr. 2015;101(2):279–86. - 31. WIRUNSAWANYA, K. ET AL. Whey Protein Supplementation Improves Body Composition and Cardiovascular Risk Factors in Overweight and Obese Patients: A Systematic Review and Meta-Analysis. Journal of the American College of Nutrition, DOI: 10.1080/07315724.2017.1344591 - 32. WOLFE R.R1, MILLER S.L, MILLER K.B. Optimal protein intake in the elderly. Clin Nutr. 2008 Oct;27(5):675-84. doi: 10.1016/j.clnu.2008.06.008. DOI:10.1016/j.clnu.2008.06.008 - 33. ZHU et al. Two-Year Whey Protein Supplementation Did Not Enhance Muscle Mass and Physical Function in Well-Nourished Healthy Older Postmenopausal Women. J Nutr 2015;145:2520–6. doi:10.3945/jn.115.218297.