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2016 Deterministic Model Behind Zika Virus Infections in Brazil

We formulated a deterministic model for simulation of zika virus 
(ZIKV) infections. This cooperates with WHO serious alert on 
February 1st, 2016 to contain ZIKV epidemic in the world, Brazil 
being the most hit. Accordingly, we have taken Brazil records on 
ZIKV cases as an example to justify the model. According to the 
model, simulations suggests that by 2020, ZIKV infections is no 
longer a threat in this country. In our analytic analysis we have 
included some brief simulations as specific cases. Finally, model 
simulation is all about Brazil.
In this model, besides a disease free equilibrium (DFE) point 
being globally stable, analysis of local DFE has two sets of 
eigenvalues, leading two different qualitative behavior. This 
follows due to variation in some parameters. In each of these 
two sets, none has backward bifurcation. That is the disease is 
controllable when R_0<1. Otherwise, when R_0>1 the disease 
free is unstable. In the analytic analysis of either qualitative 
behavior, we have associated brief simulation. Only analytic 
analysis of endemic equilibrium has not been fully developed.
We have considered Brazil ZIKV cases from January 2016 
onward to verify the model plus having some predictions about 
ZIKV infections to around 2020. The basic reproduction (R_0) 
has been estimated as R_0=0.1922<1, since then ZIKV infections 
has been decreasing since highest peak in early 2016. Should 
this value of R_0=0.1922 be stabilized or lowered, then ZIKV 
infections is no longer a threat in Brazil by 2020. Simulations for 
Brazil has been extended to understand the possible situation if 
R_0>1. 
Keywords: Deterministic model of ZIKV infections; ZIKV 
simulation in Brazil; stability of DFE.
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1  Introduction 

On February 1st, 2016 the World Health 

Organization declared ZIKV epidemic in the 

Americas as a Public Health Emergency of 

International Concern gulland2016warns. The 

foremost reason was due to an emerging 

linkage of ZIKV infections with congenital birth 

anomalies such as microcephaly and 

Guillain-Barre syndrome rocklov2016assessing 

plus new mode of transmission 

(sexual-transmission) which had not known by 

the time freour2016sexual,turmel2016late. 

Resent studies report that ZIKV is transmitted 

not only via mosquito bite but also via sexual 

contacts, blood contamination and 

mother-to-child-transmission 

(MTCT)gao2016prevention, 

manrique2016simulation. Prenatal or perinatal 

complications of ZIKV infections have been 

noted. There is some evidence that perinatal 

transmission may occur, most probably 

trans-placental or during the delivery of a 

viraemic mother corsica2015zika. 

1.1  Theoretical Framework in Mathematical 

Perspective 

Basing on the nature of epidemic, though with a 

relatively long history since its knowledge in 

1947, few researches have been conducted 

compared to related epidemics like HIV 

infections. Probably, the main reason is that its 

effects where not vividly clear to human being 

compared to recent studies. However, this does 

not rule out the fact that in the past people were 

not affected by zika virus disease (ZVD). 

Recently, a number of researches have been 

working to explore the disease down so as to 

come up with some means to control it. 

According to Rojas DP et al. 

rojas2016epidemiology all age groups are 

assumed vulnerable to ZIKV infections, but the 

most affected age group is 20 to 49 years of 

age due to its new known mode of trasmission, 

that is sexual transmission turmel2016late. A 

similar study previously published outbreaks in 

Yap Island, Micronesia, El Salvador, and Brazil 

cardoso2015outbreak. Since the population 

was fully susceptible to ZIKV transmission 

before the outbreaks, it was expected that all 

age groups would be affected. Joacim Rocklov 

et al. rocklov2016assessing, studied seasons in 

the year which are more risk to ZIKV 

transmission. There are as well more 

researches in medicine and other discipline 

miner2016zika. 

This paper is about a more insight concerning 

with mathematical models exploring the 

interpersonal spread of the epidemic. One of 

the model was done by Adam J. Kucharski et al. 

in early 2016 kucharski2016transmission. The 

model provided understanding ZVD in 

mathematical perspective, basing on some 

assumptions the model did not include sexual 

transmission. Khalid et al. in the late of 2016, 

have formulated the mathematical model by 

including sexual transmission khalidstability. On 

one hand this article is an improvement of 

Kucharski’s model, modified to include 

sexual-transmission. On the other hand this 

model includes infections to newborns through 

mother-to-child-transmission (MTCT) 

manrique2016simulation. 

2  Model Formulation 

 The model consists of two categories, the 

humans and mosquitoes with total population 

𝑁𝑇  and 𝑁𝜈  respectively. Presumably, the 

humans have four classes, the susceptible (𝑆), 

infectious ( 𝐼 ), newborns infected with 

ZIKV-linked microcephaly (𝑀 ) and recovered 

(𝑅 ). Susceptible is an individual potential to 

infections. Infectious (𝐼) refer to individuals who 

are exposed or already full brown with ZVD 

symptoms. Recovered are individuals no longer 

infectious after survival against ZVD. It is 

assumed that individuals in the recovered class 

have built immune against the ZIKV infection. 

Mosquitoes category have only susceptible (𝑆𝜈) 

and infectious (𝐼𝜈) classes. The reason is that 

the life span of mosquitoes is short enough to 

ignore the recovery period. 
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Table 1: Definition of Parameters 

Parameter Definition 

Λ, Λ𝜈 constant rate of incoming susceptible 

𝜇, 𝜇𝜈 natural death rates 

𝛼 birth rate of infected newborns 

𝜈 rate of transfer of 𝐼 individuals to 𝑅 

𝛾1 rate of infection by mosquitoes 

𝛾2 rate of infections through sexual transmission 

𝛾𝜈 rate of mosquitoes infected by humans 

𝛽𝑣 effective bites between infected mosquitoes and susceptible humans 

𝛽ℎ effective contacts from humans to humans 

𝑛 average number of sexual partners 

𝛽 effective bites between infected humans to susceptible mosquitoes 

 

Susceptible individual moves into the infectious 

class after effective interaction with infected 

mosquitoes, or sexual contact with and 

individual in the infectious class. Newborns with 

ZIKV infection through MTCT enters 𝑀 class. 

The mosquitoes moves from the susceptible to 

their infectious-class after infection through 

biting an infectious human. 

In this context, in all cases the subscript 𝜈 

signifies a transmission vector, the mosquitoes. 

System (1) and Fig.1 is the model and its 

compartments indicating inter flow of individuals 

in classes. Tab.1 above is definitions of 

parameters. 

 

 

 

Figure  1: Model compartments flow diagram 
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{
 

 
𝑆′(𝑡) = Λ − (𝛾1 + 𝛾2)𝑆 + 𝜇𝑆; 𝑆′𝜈(𝑡) = Λ𝜈 − (𝜇𝜈 + 𝛾𝜈)𝑆𝜈;

𝐼′(𝑡) = (𝛾1 + 𝛾2)𝑆 − (𝜈 + 𝜇)𝐼; 𝐼′𝜈(𝑡) = 𝛾𝜈𝑆𝜈 − 𝜇𝜈𝐼𝜈;

𝑀′(𝑡) = 𝛼𝐼 − 𝜔𝑀;

𝑅′(𝑡) = 𝜈𝐼 − 𝜇𝑅.

 (1) 

𝛾1 = 𝛽𝑣
𝐼𝑣
𝑁
;  𝛾2 = 𝑛𝛽ℎ

𝐼

𝑁
;  𝛾𝑣 = 𝛽

𝐼

𝑁
;   𝑁 = 𝑆 + 𝐼 + 𝑅;  𝑁𝑇

= 𝑆 + 𝐼 + 𝑀 + 𝑅;  𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣. 

Assign 𝛾 = 𝛾1 + 𝛾2 then the system (1) may be 

considered as model (2). 

{
 

 
𝑆′(𝑡) = Λ − 𝛾𝑆 + 𝜇𝑆; 𝑆′𝜈(𝑡) = Λ𝜈 − (𝜇𝜈 + 𝜆𝜈)𝑆𝜈;

𝐼′(𝑡) = 𝛾𝑆 − (𝜈 + 𝜇)𝐼; 𝐼′𝜈(𝑡) = 𝛾𝜈𝑆𝜈 − 𝜇𝜈𝐼𝜈;

𝑀′(𝑡) = 𝛼𝐼 − 𝜔𝑀;

𝑅′(𝑡) = 𝜈𝐼 − 𝜇𝑅.

 (2 

𝑆𝑡=0 = 𝑆(0) , 𝐼𝑡=0 = 𝐼(0) , 𝑀𝑡=0  = 𝑀0 , 𝑇𝑡=0 =

𝑇(0) , 𝑅𝑡=0 = 𝑅(0) , 𝑆𝜈𝑡 = 0 = 𝑆𝜈(0)  and 𝐼𝜈𝑡 =

0 = 𝐼𝜈(0) are initial values notations. 𝛾 is an 

expression in 𝐼, 𝐼𝑣 and 𝑁. 

3  Model Analysis 

Substitution of expression for 𝛾 and 𝛾𝜈 in the 

model (1), corresponds to the system 

{
 
 

 
 𝑆′(𝑡) = Λ − (

𝛽𝑣𝐼𝑣+𝑛𝛽ℎ𝐼

𝑆+𝐼+𝑅
+ 𝜇)𝑆 𝑆′𝜈(𝑡) = Λ𝑣 − (

𝛽𝐼

𝑆+𝐼+𝑅
+ 𝜇𝑣)𝑆𝑣;

𝐼′(𝑡) = (
𝛽𝑣𝐼𝑣+𝑛𝛽ℎ𝐼

𝑆+𝐼+𝑅
+ 𝜇)𝑆 − (𝜈 + 𝜇)𝐼 𝐼′𝜈(𝑡) =

𝛽𝐼𝑆𝑣

𝑆+𝐼+𝑅
− 𝜇𝑣𝐼𝑣;

𝑀′(𝑡) = 𝛼𝐼 − 𝜔𝑀;

𝑅′(𝑡) = 𝜈𝐼 − 𝜇𝑅;

(3) 

3.1  Equilibrium Point and Basic 

Reproduction Number 

The next generation method has been used to 

evaluate the basic reproduction number of the 

model. Basic reproduction number, 𝑅0 =
1

2
(𝑐1 + √𝑐1

2 + 4𝑐0) , where 𝑐1 =
𝑛𝛽ℎ

𝜈+𝜇
, 𝑐0 =

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣
2Λ

. 

Since 𝑁 = 𝑆 + 𝐼 + 𝑅 , 𝑁𝜈 = 𝑆𝜈 + 𝐼𝜈 , then the 

following can be deduced from the model (3): 

{
𝑁′(𝑡) = 𝛾 − 𝜇𝑁;

𝑁′𝜈(𝑡) = 𝛾𝜈 − 𝜇𝜈𝑁𝜈 .
 (4) 

The system (4) of differential equations implies 

that the model (3) is in 𝑅+
6  and from the latter D 

is a subset of 𝑅+
6  such that 

𝐷 = {(𝑆, 𝐼,𝑀, 𝑅, 𝑆𝜈 , 𝐼𝜈) ∈ 𝑅+
6 |𝑆 + 𝐼 + 𝑅 ≤

Λ

𝜇
, 𝑆𝜈 + 𝐼𝜈 ≤

Λ𝜈

𝜇𝜈
, 𝑀 ≥ 0}.  

Therefore, the condition to be considered is 

only that the model (3) is in 𝐷. That the system 

(3) in D is bounded in non-negative region. In 

order to obtain the equilibrium point, LHS of 

every equation in system (3) is set to zero, thus 

reducing the system to 

{
 
 
 
 

 
 
 
 Λ = (

𝛽𝑣𝐼𝑣+𝑛𝛽ℎ𝐼

𝑆+𝐼+𝑅
+ 𝜇)𝑆 . . . (𝑖);

(𝜈 + 𝜇)𝐼 = (
𝛽𝑣𝐼𝑣+𝑛𝛽ℎ𝐼

𝑆+𝐼+𝑅
)𝑆 . . . (𝑖𝑖);

𝛼𝐼 = 𝜔𝑀 . . . (𝑖𝑖𝑖);
𝜈𝐼 = 𝜇𝑅 . . . (𝑖𝑣);

Λ𝑣 = (
𝛽𝐼

𝑆+𝐼+𝑅
+ 𝜇𝑣)𝑆𝑣 . . . (𝑣);

𝛽𝐼𝑆𝑣

𝑆+𝐼+𝑅
= 𝜇𝑣𝐼𝑣 . . . (𝑣𝑖).

 

Express 𝐼,𝑀, 𝑅, 𝑆𝜈 , 𝐼𝜈  in terms of 𝑆  and 

substitute in equation (ii), along side that 

include 𝑁 = 𝑆 + 𝐼 + 𝑅 =
Λ

𝜇
. Thus, the equation 

in terms of 𝑆 becomes 

𝛽𝜈𝛽Λ𝜈(Λ − 𝜇𝑆)𝑆 +
𝑛𝛽ℎ𝛽𝜇𝜈𝑆(𝜆 − 𝜇𝑆)

2

𝜇 + 𝜈
+ 𝑛𝛽ℎ𝜇𝜈

2𝑅𝑆(Λ

− 𝜇𝑆)

= 𝛽𝜇𝜈𝑅(Λ − 𝜇𝑆)
2 + (𝜇 + 𝜈)𝑅2𝜇𝜈

2(Λ

− 𝜇𝑆) 

On one hand the equation have Λ − 𝜇𝑆 = 0 

which leads to 𝑆 =
Λ

𝜇
, suggesting the disease 

free equilibrium for system of equations (i) - (vi); 

which is obtained as 𝐸0(
Λ

𝜇
, 0, 0, 0,

Λ𝜈

𝜇𝜈
, 0). 

Table  2: Sensitivity Indices of 𝑅0 

Rank (Highest Sensitivity First)   Parameter   Sensitivity Index  

1  𝜈   -0.8856  

2  𝑛𝛽ℎ   +0.8038  

3  𝛽   +0.0001077  

4  𝛽𝜈   +0.00003591  
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3.2 Sensitivity Analysis of Basic 

Reproduction number (𝑹𝟎) 

Sensitivity analyses allow us to measure the 

relative change in a state variable when a 

parameter changes. In our simulation, we 

consider that a change of the state variable 

parallels with a change in 𝑅0. Since 𝑅0 is a 

function of the parameters, then we can 

evaluate the relative sensitivity of 𝑅0 for every 

parameter. 

Definition: The normalized forward sensitivity 

index for a variable (𝑥) which depends on a 

parameter (𝑝), denote it as (𝛾𝑝
𝑥) and define 

 𝛾𝑝
𝑥 =

∂𝑥

∂𝑝
.
𝑝

𝑥
.  

So for 𝑅0 =
1

2
(
𝑛𝛽ℎ

𝜈+𝜇
+√(

𝑛𝛽ℎ

𝜈+𝜇
)2 +

4𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣
2Λ
) , the 

sensitivity index of 𝑅0, 

𝛾𝑝
𝑅0 =

∂𝑅0

∂𝑝
.
𝑝

𝑅0
. (5) 

 

Figure  2: Graphs for Sensitivity Indices 

3.2.1  Sensitivity index of R_0 

Tab.2 is a list of sensitivity indexes of 𝑅0 for 

the four parameters 𝛽𝜈 , 𝛽 , 𝑛𝛽ℎ  and 𝜈 . 

Evaluation of the sensitivity indexes based on 

the parameters estimated from the data 

recorded in Brazil kibona2017sir. The formula 

(5) has been used to evaluate the sensitivity 

indexes. 

The ranking in Tab.2, 𝑅0 is most sensitive to a 

parameter 𝜈  and least sensitive for 𝛽𝜈 . The 

signs on the sensitivity index indicate the 

directions of change. For instance , 𝑅0 

increases with increase in 𝑛𝛽ℎ and decreases 

with increase in 𝜈 and so on. 

Fig.2 is a graphical illustration of the sensitivity 

of 𝑅0  for some selected interval of the 

parameters. Any increase in 𝑛𝛽ℎ , 𝛽  or 𝛽𝜈 

leads to an increase in 𝑅0, however,𝑛𝛽ℎ has 

the greatest positive influence of all on 𝑅0.

For values of 𝑛𝛽ℎ  below a 5 units, there is 

approximately a linear relationship between 𝑅0 

and 𝑛𝛽ℎ, fig.2. In this particular case of the plot, 

5 units change in 𝑛𝛽ℎ leads to 4 units change 

in 𝑅0. On the other hand 𝑅0 has not only very 

small but also almost same sensitivity to 𝛽 and 

𝛽𝜈 . fig.2 clearly indicates the graph for 𝑅0 

versus 𝛽𝜈, that there is very small increase in 

𝑅0 in 5 units change of 𝛽𝜈. 

In contrary 𝜈  has negative influence on 𝑅0 , 

fig.2. Increasing 𝜈  from 0 to 1, decreases 

values of 𝑅0  from 1.75 to 1. This evidently 

suggests that increasing 𝜈 lowers the value of 

𝑅0. 

3.3  Local Stability of Disease Free 

Equilibrium 

Below is the discussion considering the stability 

of the system at equilibrium point, 𝐸0 for 𝑅0 <

1. Jacobian matrix, 𝐽 of the system (3). 
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𝐽 =

(

 
 
 
 
 
 
 
 
−𝜇 −

(𝛽𝜈𝐼𝜈 + 𝑛𝛽ℎ𝐼)(𝐼 + 𝑅)

𝑁2
𝛽𝜈𝐼𝜈𝑆 − 𝑛𝛽ℎ𝑆(𝐼 + 𝑅)

𝑁2
0

(𝛽𝜈𝐼𝜈 + 𝑛𝛽ℎ𝐼)𝑆

𝑁2
0 −

𝛽𝜈𝑆

𝑁
(𝛽𝜈𝐼𝜈 + 𝑛𝛽ℎ𝐼)(𝐼 + 𝑅)

𝑁2
−
𝛽𝜈𝐼𝜈𝑆 − 𝑛𝛽ℎ𝑆(𝐼 + 𝑅)

𝑁2
− (𝜈 + 𝜇) 0 −

(𝛽𝜈𝐼𝜈 + 𝑛𝛽ℎ𝐼)𝑆

𝑁2
0

𝛽𝜈𝑆

𝑁
0 𝛼 −𝜔 0 0 0
0 𝜈 0 −𝜇 0 0
𝛽𝑆𝜈𝐼

𝑁2
−
𝛽𝑆𝜈(𝑆 + 𝑅)

𝑁2
0

𝛽𝑆𝜈𝐼

𝑁2
−
𝛽𝐼

𝑁
− 𝜇𝜈 0

−
𝛽𝑆𝜈𝐼

𝑁2
𝛽𝑆𝜈(𝑆 + 𝑅)

𝑁2
0 −

𝛽𝑆𝜈𝐼

𝑁2
𝛽𝐼

𝑁
−𝜇𝜈 )

 
 
 
 
 
 
 
 

 

 

That is at the DFE, the Jacobian matrix (𝐽𝐸0) 

becomes: 

𝐽𝐸0 =

(

 
 
 
 
 
 
 

−𝜇 −𝑛𝛽ℎ 0 0 0 −𝛽𝜈
0 𝑛𝛽ℎ − (𝜈 + 𝜇) 0 0 0 𝛽𝜈
0 𝛼 −𝜔 0 0 0
0 𝜈 0 −𝜇 0 0

0
−Λ𝜈𝜇𝛽

𝜇𝜈Λ
0 0 −𝜇𝜈 0

0
Λ𝜈𝜇𝛽

Λ𝜇𝜈
0 0 0 −𝜇𝜈

)

 
 
 
 
 
 
 

 

Clearly, the matrix 𝐽𝐸0  has eigenvalues  

 𝜆1,2 = −𝜇, 𝜆3 = −𝑤, 𝜆4 = −𝜇𝜈  

 plus the eigenvalues 𝜆5 and 𝜆6 to be solved 

from the determinant equation 

 

|

𝑛𝛽ℎ − (𝜈 + 𝜇) − 𝜆 𝛽𝜈
Λ𝜈𝜇𝛽

Λ𝜇𝜈
− 𝜆 −𝜇𝜈 − 𝜆| = 0 

which leads to the characteristic equation  

 𝜆2 + (𝜇𝜈 + 𝜇 + 𝜈 − 𝑛𝛽ℎ)𝜆 + 𝜇𝜈(𝜇 + 𝜈 −

𝑛𝛽ℎ) −
Λ𝜈𝜇𝛽𝛽𝜈

𝜇𝜈Λ
= 0. (6) 

 

By properties of roots of quadratic equation:  

 𝜆5 + 𝜆6 = −(𝜇𝜈 + 𝜇 + 𝜈 − 𝑛𝛽ℎ) , 𝜆5 ⋅ 𝜆6 =

𝜇𝜇(𝜇 + 𝜈 − 𝑛𝛽ℎ) −
Λ𝜈𝜇𝛽𝛽𝜈

𝜇𝜈Λ
  

When 𝑅0 < 1, leads to 𝑐1 =
𝑛𝛽ℎ

𝜇+𝜈
< 1, and 𝜆5 +

𝜆6 < 0 , alongside with 𝑐1 + 𝑐0 < 1 . So, 

accordingly 𝜆5 ⋅ 𝜆6 > 0 so then 𝜆5 < 0, 𝜆6 < 0. 

Therefore, the system’s equilibrium point, 𝐸0 is 

locally asymptotically stable. When 𝑅0 > 1, that 

means 𝑐1 + 𝑐0 > 1 and 𝜆5 ⋅ 𝜆6 < 0 upholds, in 

this case there exists at least one positive 

eigenvalue. This leads to unstable DFE point. 

3.3.1  Simulation of a local DFE point 

Consider equation (6): 𝜆2 + (𝜇𝜈 + 𝜇 + 𝜈 −

𝑛𝛽ℎ)𝜆 + 𝜇𝜈(𝜇 + 𝜈 − 𝑛𝛽ℎ) − 𝐴 = 0 , where 𝐴 =

𝐴(𝛽𝜈 , 𝛽) =
Λ𝜈𝜇𝛽𝛽𝜈

Λ𝜇𝜈
≥ 0 . That is 𝐴  takes 

non-negative real constants. Consider the 

nature of stability of the DFE for 𝐴 = 0 and 

𝐴 > 0  each at a time. From theorem (3.1) 

below point 𝐴 = 0 is simply a bouncing back 

point. 

Theorem 3.1 When 𝐴 = 0, 𝜒(𝜆0) = 0  results 

into four eigenvalues: 𝜆0 = −𝜇 , −𝜔 ,  −𝜇𝜈 , 

𝑛𝛽ℎ − (𝜈 + 𝜇). The DFE is asymptotically stable 

provided that 
𝑛𝛽ℎ

𝜈+𝜇
< 1, of which 𝑅0 < 1.   

Proof. The for four eigenvalues follows as a 

solution from 𝜒(𝜆0) = 0 : (𝜇 + 𝜆0)
2(𝜔 +

𝜆0)(−𝜇𝜈 − 𝜆0)(𝜇 + 𝜆0)(𝑛𝛽ℎ − (𝜈 + 𝜇) − 𝜆0) = 0  

⇔  𝜆0 = −𝜇 , −𝜔 ,  −𝜇𝜈 , 𝑛𝛽ℎ − (𝜈 + 𝜇) . All 

eigenvalues are negative provided 𝑛𝛽ℎ − (𝜈 +

𝜇) < 0 ⇔
𝑛𝛽ℎ

𝜈+𝜇
< 1  which is the condition for 

asymptotically stable DFE. 

𝑅0 =
1

2
(
𝑛𝛽ℎ

𝜈+𝜇
+√(

𝑛𝛽ℎ

𝜈+𝜇
)2 +

4𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣
2Λ
) . Since 𝐴 =

Λ𝜈𝜇𝛽𝛽𝜈

Λ𝜇𝜈
= 0  then either 𝛽𝜈 = 0  or 𝛽 = 0 . Not 

that whenever 𝛽𝜈 = 0  so does 𝛽 , and the 

converse is true. That is either 𝛽𝜈 = 0 or 𝛽 = 0, 

meaning that there is no ZVD transmission due 

to mosquito. Thus, 𝑅0 =
1

2
(
𝑛𝛽ℎ

𝜈+𝜇
+

√(
𝑛𝛽ℎ

𝜈+𝜇
)2 + 0) =

𝛽ℎ

𝜈+𝜇
< 1 , this completes the 

proof.  

Fig.3 illustrates typical dynamics for 𝐴 = 0 at 
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DFE for some initial state due to introduction of 

ZIKV infectious when 𝑅0 = 0.4553 < 1 . The 

system at 𝑅0 = 0.4553 < 1  stabilizes to the 

DFE. Fig.3 depicts the diminishing behavior of 

ZIKV infections. For clarity purpose Fig.3 bears 

the 𝐼  and 𝑀  time series achieving the 

endemic equilibrium. 

 

Figure  3: Dynamics of DFE point when 𝑨 = 𝑨𝟎 = 𝟎, 𝑹𝟎 = 𝟎. 𝟒𝟓𝟓𝟑 < 𝟏 

 

Well, it is difficult to practically get 𝑅0 = 1 . 

However, for the sake of understanding this is 

simulated in Fig.4. For 𝑅0 = 1 the epidemic is 

prevalent at endemic equilibrium (Fig.4). Time 

series for 𝐼(𝑡) and 𝑀(𝑡) are shown again in 

Fig.4 in large scale so as to see their 

prevalence. On the other hand when 𝑅0 > 1 

the epidemic does not diminish with time rather 

remains. Fig.5 is an example of unstable DFE 

(𝑅0 = 1.6667 > 1) with some initial state of the 

epidemic. 

 

Figure  4: Ideally the endemic is stable if 𝑹𝟎 = 𝟏 

 

Invasion by the epidemic lead to endemic 

equilibrium because for 𝑅0 = 1.6667 > 1  the 

DFE is unstable. Fig.5 is an illustration for all 

classes. Fig.5 is a 3D plot for selected three 

classes. It appears that the initial state spirals 

toward the equilibrium point. 
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Figure  5: For 𝑨𝟎 = 𝟎, 𝑹𝟎 = 𝟏. 𝟔𝟔𝟔𝟕 > 𝟏 DFE switches into Endemic equilibrium  

 

However, any small change of 𝛽𝜈  or 𝛽 

enough to be ≈ 0  at 𝐴 = 0  takes it to a 

positive constant, 𝐴 > 0  which calls for new 

set of eigenvalues in 𝜒(𝜆0) = 0 . New set of 

eigenvalues definitely results to new qualitative 

behavior of DFE. Conventionally,𝐴 = 0  does 

not define a bifurcation point, since there is no 

crossing at 𝐴 = 0 from 𝐴 > 0 to 𝐴 < 0 rather 

it is just a bounce back point to 𝐴 > 0. 

Theorem 3.2 When 𝐴 > 0, 𝜒(𝜆0) = 0 has five 

eigenvalues 𝜆0 = −𝜇 , −𝜔 ,  −𝜇𝜈 , 
1

2
[−(2𝜇 +

𝜈 − 𝑛𝛽ℎ) ± √𝐷] . Provided that 
𝑛𝛽ℎ

𝜈+𝜇
< 1  then, 

𝑅0 < 1 and DFE is asymptotically stable.   

Proof. For 𝐴 > 0 , the characteristic equation 

( 𝜒(𝜆0) = 0 ) has three negative eigenvalues 

𝜆0 = −𝜇 , −𝜔 ,  −𝜇𝜈  plus two roots from 

quadratic equation 𝜆0
2 + 𝜆0(𝜇 − [𝑛𝛽ℎ − (𝜈 +

𝜇)]) + [(𝜈 + 𝜇 − 𝑛𝛽ℎ)𝜇 − 𝐴] = 0 . Thus 

eigenvalues includes 𝜆0 =
1

2
[−(2𝜇 + 𝜈 −

𝑛𝛽ℎ) ± √𝐷] . The roots from the quadratic 

equation has non positive real roots if 𝐷 <

[(2𝜇 + 𝜈) − 𝑛𝛽ℎ]
2 . That is 𝐷 < [(2𝜇 + 𝜈) −

𝑛𝛽ℎ]
2 ⇔ 𝐴 < [(𝜈 + 𝜇) − 𝑛𝛽ℎ]𝜇 . It follows that 

𝐴

(𝜈+𝜇)𝜇
< 1 ⇔

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣𝜇Λ
< 1 . Easy to see that 

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣
2Λ
<

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣𝜇Λ
, since 𝜇𝜈 > 𝜇 > 0 . Thus 

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣
2Λ
<

𝛽𝑣𝛽Λ𝑣𝜇

(𝜈+𝜇)𝜇𝑣𝜇Λ
< 1. 

 

𝑅0 =
1

2
(
𝑛𝛽ℎ
𝜈 + 𝜇

+ √(
𝑛𝛽ℎ
𝜈 + 𝜇

)2 +
4𝛽𝑣𝛽Λ𝑣𝜇

(𝜈 + 𝜇)𝜇𝑣
2Λ
)

=
𝑛𝛽ℎ

2(𝜈 + 𝜇)
+ √(

𝑛𝛽ℎ
2(𝜈 + 𝜇)

)2 +
𝛽𝑣𝛽Λ𝑣𝜇

(𝜈 + 𝜇)𝜇𝑣
2Λ

<
𝑛𝛽ℎ

2(𝜈 + 𝜇)
+ √(

𝑛𝛽ℎ
2(𝜈 + 𝜇)

)2 +
𝛽𝑣𝛽Λ𝑣𝜇

(𝜈 + 𝜇)𝜇𝑣𝜇Λ

<
1

2
+ √(

1

2
)2 + 0 + 0 = 1

 

 

Some simulations for theorem 3.2 are shown 

below. Fig.6 illustrates DFE for some initial 

state of ZIKV infectious when 𝐴 = 0.0018 > 0 

and 𝑅0 = 0.4309 < 1 . The system at DFE 

combats successfully to eliminate the epidemic, 

eventually stabilizes to the DFE. Fig.5 

demonstrates a the diminishing behavior of 

ZIKV infectious classes. Fig.5 portrays in large 

scale the dynamics of 𝐼 and 𝑀. 

So when 𝐴 = 0, the quadratic equation 𝜆0
2 +

𝜆0(𝜇 − [𝑛𝛽ℎ − (𝜈 + 𝜇)]) + [(𝜈 + 𝜇 − 𝑛𝛽ℎ)𝜇 −

𝐴] = 0 has two roots −𝜇 and 𝑛𝛽ℎ − (𝜈 + 𝜇) of 

which −𝜇  becomes a root of multiplicity of 

three in total. Therefore, two eigenvalues from 

the quadratic equation (theorem 3.2) 

degenerate to a single eigenvalue 𝑛𝛽ℎ − (𝜈 +

𝜇) (theorem 3.1) when 𝐴 reduces to zero of 

which there are four eigenvalues. 
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Figure  6: Dynamics of DFE point when 𝑨𝟏 = 𝟎. 𝟎𝟎𝟏𝟖 > 𝟎, 𝑹𝟎 = 𝟎. 𝟒𝟑𝟎𝟗 < 𝟏 

   

  

Figure  7: DFE is replaced by Endemic equilibrium 𝑨 > 𝟎, 𝑹𝟎 = 𝟏. 𝟑𝟎𝟕𝟖 > 𝟏 

 

However, when 𝑅0 > 1, the DFE is unstable. 

An incidence of the epidemic (Fig.7) escalates 

to endemic equilibrium. For instance, when 

𝑅0 = 1.3078 > 1 , DFE is unstable and the 

epidemic persists in the society. Fig.7 

demonstrates the scenario. On one hand Fig.7 

is a 2D plot for S(t) and I(t). 

 

  

Figure  8: DFE is replaced by Endemic equilibrium 𝑨 > 𝟎, 𝑹𝟎 = 𝟏. 𝟑𝟎𝟕𝟖 > 𝟏 



Isack E. Kibona et al., IRJPH, 2018; 2:11 

 IRJPH: http://escipub.com/international-research-journal-of-public-health/                 0010

On the other hand Fig.8 is a 3D plot for 𝑆, 𝐼 

and 𝑅, where as Fig.8 is time series for 𝐼(𝑡) 

and 𝑀(𝑡) in which the endemic equilibrium is 

maintained. 

3.3.2  Global Stability of Disease Free 

Equilibrium 

Global stability of disease free equilibrium point, 

𝐸0 such that D is a global attraction. Consider 

the differential equations: 

{
𝐼′(𝑡) = (

𝛽𝑣𝐼𝑣+𝑛𝛽ℎ𝐼

𝑆+𝐼+𝑅
+ 𝜇)𝑆 − (𝜈 + 𝜇)𝐼;

𝐼′𝜈(𝑡) =
𝛽𝐼𝑆𝑣

𝑆+𝐼+𝑅
− 𝜇𝑣𝐼𝑣.

 (7) 

𝐼′(𝑡) ≤ (
𝛽𝑣𝐼𝑣 + 𝑛𝛽ℎ𝐼

𝑆
)𝑆 − (𝜈 + 𝜇)𝐼

= 𝛽𝑣𝐼𝑣 + 𝑛𝛽ℎ𝐼 − (𝜈 + 𝜇)𝐼 . . . (𝑖)
 

𝐼′𝜈(𝑡) ≤
𝛽𝐼
Λ𝜈
𝜇𝜈
𝐼

− 𝜇𝑣𝐼𝑣

= 𝛽𝐼
Λ𝜈
𝜇𝜈
− 𝜇𝑣𝐼𝑣 . . . (𝑖𝑖)

 

Now that, (i) and (ii) are approximates the 

differential equations in system (7) as linear. 

{
𝐼′(𝑡) = 𝛽𝑣𝐼𝑣 + 𝑛𝛽ℎ − (𝜈 + 𝜇)𝐼;

𝐼′𝜈(𝑡) = 𝛽𝐼
Λ𝜈

𝜇𝜈
− 𝜇𝑣𝐼𝑣.

 (8) 

The system (8) has two eigenvalues: 𝜆1 =

𝑛𝛽ℎ − (𝜇 + 𝜈) , 𝜆2 = −𝜇𝜈 . When 𝑅0 < 1 , 𝑐1 =
𝑛𝛽ℎ

𝜇+𝜈
< 1  and so then 𝜆1 = 𝑛𝛽ℎ − (𝜇 + 𝜈) < 0 , 

𝜆2 = −𝜇𝜈 < 0. Therefore, when 𝑡 → ∞, 𝐼 → 0, 

𝐼𝜈 → 0. Conclusively, since the system (7) has 

𝑀 → 0, 𝑅 → 0, 𝑆 →
Λ

𝜇
, 𝑆𝜈 →

Λ𝜈

𝜇𝜈
 as 𝑡 → ∞  it is 

deduced that for 𝑅0 < 1  the disease free 

equilibrium point, 𝐸0  in 𝐷  is a global 

attraction. 

3.4  Local Stability of the Endemic 

Equilibrium 

For endemic equilibrium, 𝐸∗(𝑆∗, 𝐼∗, 𝑀∗, 𝑅∗, 𝑆𝑣
∗, 𝐼𝑣

∗), 
𝑑𝑆

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑀

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝑆𝑣

𝑑𝑡
=

𝑑𝐼𝑣

𝑑𝑡
= 0. The system of 

equations (3) reduces to 

 

0 = Λ − (𝛾 + 𝜇)𝑆 . . . 𝑖; 0 = 𝜈𝐼 − 𝜇𝑅 . . . 𝑖𝑣;
0 = 𝛾𝑆 − (𝜈 + 𝜇)𝐼 . . . 𝑖𝑖; 0 = Λ𝑣 − (𝜇𝑣 + 𝛾𝑣)𝑆𝑣 . . . 𝑣;
0 = 𝛼𝐼 − 𝜔𝑀 . . . 𝑖𝑖𝑖; 0 = 𝛾𝑣𝑆𝑣 − 𝜇𝑣𝐼𝑣 . . . 𝑣𝑖.

  

Solving this simultaneously, the endemic 

equilibrium point, 𝐸∗ is: 

 

𝑆∗ =
Λ

𝛾+𝜇
, 𝐼∗ =

Λ𝛾

(𝛾+𝜇)(𝜈+𝜇)
, 𝑀∗ =

Λ𝛾𝛼

(𝛾+𝜇)(𝜈+𝜇)𝜔
, 𝑅∗ =

Λ𝛾𝜈

(𝛾+𝜇)(𝜈+𝜇)𝜇

𝑆𝜈
∗ =

Λ𝜈(𝜇+𝜈)(𝛾+𝜈)

𝜇𝜈(𝛾+𝜇)(𝜈+𝜇)+𝜇𝛽𝛾
, 𝐼𝜈

∗ =
Λ𝜈𝜇𝛽𝛾

𝜇𝜈[𝜇𝜈(𝛾+𝜇)(𝜈+𝜇)+𝜇𝛽𝛾]
.

 (9) 

Assign 𝑐2 =
𝜇𝜈

𝜈
, 𝑐3 =

𝜈+𝜇+𝛽

(𝜈+𝜇)𝜈
, 𝑐4 =

1

𝜇
. 𝛾 is 

a positive value from the equation: 

𝛾 =
𝑐0𝑐2

1+𝛾𝑐3
+

𝑐1𝛾

1+𝑐4𝛾
. (10) 

Equation (10) is simply a cubic equation: 

𝑐3𝑐4𝛾
3 + (𝑐3 − 𝑐1𝑐3 + 𝑐4)𝛾

2 + (1 − 𝑐1 −

𝑐0𝑐2𝑐4)𝛾 − 𝑐0𝑐2 = 0 . Since 𝑐3𝑐4 > 0  and 

−𝑐0𝑐2 < 0 , according to Descartes’s rule of 

signs, equation (10) has at least one positive 

root. Thus, the system (3) has at least one 

endemic equilibrium. On the other hand, if 𝑐3 −

𝑐1𝑐3 + 𝑐4 < 0  and 1 − 𝑐1𝑐2𝑐4 > 0  there exist 

one or three positive roots. From Jacobian 

matrix, characteristic polynomial 𝜒(𝜆): 

 

𝜒(𝜆) =
|

|

−𝜇 − 𝑘0 − 𝜆 𝑘 − 𝑘1 0 𝑘2 0 −𝑘3
𝑘0 −(𝑘 − 𝑘1) − (𝜈 + 𝜇) − 𝜆 0 −𝑘2 0 𝑘3
0 𝛼 −𝜔 − 𝜆 0 0 0
0 𝜈 0 −𝜇 − 𝜆 0 0
𝑘4 −𝑘5 0 𝑘4 −𝑘6 − 𝜇𝜈 − 𝜆 0
−𝑘4 𝑘5 0 −𝑘4 𝑘6 −𝜇𝜈 − 𝜆

|

|
= 0 

for endemic equilibrium; where: 

𝑘0 =
(𝛽𝜈𝐼𝜈

∗ + 𝑛𝛽ℎ𝐼
∗)(𝐼∗ + 𝑅∗)

(𝑁∗)2
𝑘 =

𝛽𝜈𝐼𝜈
∗𝑆∗

(𝑁∗)2
𝑘1 =

𝑛𝛽ℎ𝑆
∗(𝐼∗ + 𝑅∗)

(𝑁∗)2
𝑘2 =

(𝛽𝜈𝐼𝜈
∗ + 𝑛𝛽ℎ𝐼

∗)𝑆∗

(𝑁∗)2

𝑘3 =
𝛽𝜈𝑆

∗

𝑁∗
𝑘4 =

𝛽𝑆𝜈
∗𝐼∗

(𝑁∗)2
𝑘5 =

𝛽𝑆𝜈
∗(𝑆∗ + 𝑅∗)

(𝑁∗)2
𝑘6 =

𝛽𝐼∗

𝑁∗
 

Note that 𝑘, 𝑘0, 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5, 𝑘6 > 0  
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The roots (𝜆) in 𝜒(𝜆) = 0 are the eigenvalues which equivalently evaluated from  

 𝑎0𝜆
4 + 𝑎1𝜆

3 + 𝑎2𝜆
2 + 𝑎3𝜆 + 𝑎4 =

𝑎0 = 𝜇 + 𝜈
𝑎1 = 𝜈𝑘3 + (𝜇 + 𝜈)[𝑘1 − (𝑘 − 4𝜇 + 2𝑘0)]

𝑎2 = 𝜈𝑘2(3𝜇 + 𝑘0) + 𝑘6(𝑘4 − 𝑘3𝑘5) + (𝜇 + 𝜈)[(𝜇 + 𝑘0)𝑘1 − [(𝜇 + 𝑘0)𝑘1 + 3𝜇
2 + 4𝑘0𝜇 + 𝑘0

2]]

𝑎3 = (𝜈 + 𝜇)[𝑘3𝑘4 + 2𝜇𝑘1 − 𝑘3(𝑘5 − (2𝜇 + 𝜈)𝑘0 − (3𝜇 + 2𝜈)𝜇] + 𝑘0[(𝜇𝜈 − 𝑘2𝜈)𝑘0 + 2𝜇
2𝜈]

+𝜇𝜈(𝜇2 + 𝜈𝑘2) + 𝑘6[𝑘4(𝜇 + 1) − 𝑘3𝑘5𝜇 − 𝑘3𝑘5(1 + 2𝜇)]

𝑎4 = 𝑘3𝑘5[𝑘0(2𝜈 + 𝜇 + 𝜇
2) − 𝜇2 − 𝜇𝜈] + (𝜈 + 𝜇)[𝑘1 − 𝑘 − (𝑘0 + 𝜇)

2(2𝜇 + 𝜈) − 𝜇𝑘3𝑘4] − 𝜇
2𝑘0𝑘3𝑘4

 

 

Although the characteristic polynomial 𝜒(𝜆) is 

not evidently justified as Hurwitz, numerical 

simulations are evident from previous figures 

Fig.7 and Fig.5 demonstrating that when 𝑅0 >

1  endemic equilibrium is stable and it is 

unstable when 𝑅0 < 1. On the other hand the 

disease is controllable provided 𝑅0 < 1. 

4  Simulation of Spread of ZIKV Infections 

in Brazil 

Faria, N.R. et al., found that ZIKV in Brazil 

occured as early as May 2013 faria2016zika. 

For some reasons our simulation is based on 

ZIKV cases since January 2016. These records 

are available from PAHO/WHO 2017 (paho.org) 

faria2017establishment. For the purpose of 

simulating the recorded ZIKV cases we used 

Matlab built-in implementation of the 

Levenberg-Marquardt algorithm called nlinfit. 

 

 

Figure  9: Total cases of ZIKV and GBS, EW1 of 2016 to EW22 of 2017 

faria2017establishment, faria2016zika 

 

In order to estimate suitable parameters for the 

model, required initial guess of parameters plus 

some recorded cases of the epidemic. Initial 

guess from a Kibona et al., kibona2017sir were 

used, and recorded cases were estimated from 

Fig.9. We found it necessary to split the set of 

parameters into two. It appears that before 

WHO declaration that ZIKV need attention by 

the whole world the trend to the epidemic had 

different set of parameters, so is thereafter. 

Thus, one set of parametes which is an 

extention before WHO declaration has 𝑅0 =

5.8316 . On the other set of parameters the 

value of 𝑅0 = 0.1970 which is inline with the 

epidemic being under control 

nishiura2016preliminary. The histogram, Fig.9 
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for ZIKV cases and GBS records has been 

used to draw the information and later plotted 

by MaTLab as in Fig.10. 

 

 

Figure  10: Source: PAHO/WHO 2017, Zika-Epidemiological Report, Brazil 

favoretto2016first. 

 

The estimated parameter by nlinfit then were 

used in the model to plot the graphs as 

depicted in Fig.11. ZIKV information in Fig.11, 

that is Zika cases and GBS are separated into 

two figures Fig.11 and Fig.11 for clarity. In 

addition, plots in Fig.9 look similar in modelling 

ZIKV obtained by J Ikejezie et al 

jamboos2017simulation, ikejezie2017zika. 

Should it be the case that no intervention were 

made against the epidemic in February 2016, 

then 𝑅0 = 5.8316 > 1  would have been the 

case for sometime. The ZIKV infections could 

have taken a no intervention path. In this case 

ZIKV infections spread could be catastrophic as 

in Fig.12. That we believe that some 

intervention have shifted the model from one 

set of parameters with no intervention in which 

𝑅0 = 5.8316 , Fig.12 to another set of 

parameters with intervention, Fig.12 in which 

𝑅0 = 0.1970. The later is what prevails in Brazil. 

 

  

Figure  11: Model simulation of recorded ZIKV cases and GBS 
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Figure  12: Intervention against the epidemic bridges set of Parameters for the model 

 

The model includes an assumption that 

individuals recovered from ZIKV are resistant to 

reinfection dejnirattisai2016dengue. So a no 

intervention model would take the path to 

endemic equilibrium Fig.13. On the other hand, 

with intervention; number of ZIKV infections 

decreases toward disease free 

equilibrium,Fig.12. 

 

  

Figure  13: Possibility of the Endemic Equilibrium 

 

In addition to deliberate efforts against the 

epidemic; an increase in number of recovered 

individual do not favour spread of the epidemic. 

This is one important aspect of ZIKV infections 

Fig.13. The latter as well explains as to why 

countries ever infected by ZIKV are not prone 

to the epidemic. Evidently, basing on the 

estimated value of 𝑅0 = 0.1970 < 1 along with 

plots of ZIKV cases we expect that in the near 

future after 2017 ZIKV infections can no longer 

be threat to Brazil. 

4.1  Conclusion 

 In epidemiological concern the dynamics of 

the model at the DFE points poses no threats 

since the epidemic appears to be controllable if 

𝑅0 < 1. That is, maximizing recovery rate, and 

minimizing both unsafe sexual contacts and 

mosquito bites to the extent of 𝑅0 < 1  the 

epidemic can be eliminated. The reason is that 

no backward bifurcation has been justified. On 

the other hand, only forward bifurcation exists; 

that is when 𝑅0 > 1 DFE point is unstable in 
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which case the endemic endemic equilibrium 

prevails. Brazil has been taken as an example 

for simulation, found with 𝑅0 = 0.1970 < 1 . 

Accordingly, simulation comply to the fact that 

the epidemic is dying in this country. 

The analytic study of the disease free 

equilibrium (DFE) justifies two different sets of 

eigenvalues from the characteristic equation at 

DFE point. These sets of eigenvalues are 

functions of variation in some parameters. Each 

set of eigenvalues determines its own 

qualitative behavior of DFE point. One of the 

two sets of eigenvalues simply occurs at one 

point on the varying parameter. Therefore, 

practically there is only one qualitative behavior 

of the DFE in which the local DFE point has five 

eigenvalues. Analysis justifies that DFE point is 

locally asymptotically stable provided that 𝑅0 <

1. On the other hand if 𝑅0 > 1 the the DFE is 

locally unstable and for any given initial state of 

the epidemic the endemic equilibrium becomes 

stable. 

Not only that the DFE point is locally 

asymptotically stable but also has been found 

to be globally stable. This is interesting and 

offers more room for ability to control the 

epidemic when 𝑅 < 1. Simulations on specific 

case in the analytic analysis have been done 

on 𝑅0  for values around 𝑅0 = 1  and some 

relatively away from this. Numerically the 

results from simulations is that epidemic grows 

only when 𝑅0 > 1 . That means there is no 

backward bifurcation. 

There is great hope that for 𝑅0 = 0.1970 < 1 

as estimated from Brazil ZIKV case records, 

beyond 2020 there can be no more threat of the 

epidemic in this nation. It is strongly 

recommended that current efforts against the 

epidemic have to be strengthened. One 

important finding in this model is that 𝑅0  is 

most sensitive to recovery rate followed by 

sexual sexual transmission (Tab.2). Therefore, 

although no specific treatment is known about 

ZVD knowing the status of any suspected 

individual is still important. That can help to 

take necessary precautions plus treating the 

patient from available treatment. 
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Note the acronyms from Tab. 3 below available in the whole article.   

Table  3: Acronyms 

DFE   Disease Free Equilibrium  

EW   Epidemiological Week  

GBS   Guillain-Barre syndrome  

MTCT   Mother-to-child-transmission  

PAHO   Pan American Health Organization  

𝑅0   Basic Reproduction Number  

WHO   World Health Organization  

ZIKV   Zika virus  

ZVD   Zika virus disease  
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