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A Logical Approach for Empirical Risk Minimization in Machine 
Learning for Data Stratification

The data-driven methods capable of understanding, mimicking 
and aiding the information processing tasks of Machine Learn-
ing (ML) have been applied in an increasing range over the past 
years in diverse areas at a very high rate, and had achieved 
great success in predicting and stratifying given data instanc-
es of a problem domain. There has been generalization on the 
performance of the classifier to be the optimal based on the 
existing performance benchmarks such as accuracy, speed, 
time to learn, number of features, comprehensibility, robustness, 
scalability and interpretability. However, these benchmarks alone 
do not guarantee the successful adoption of an algorithm for 
prediction and stratification since there may be an incurring risk 
in its adoption. Therefore, this paper aims at developing a logical 
approach for using Empirical Risk Minimization (ERM) technique 
to determine the machine learning classifier with the minimum 
risk function for data stratification. The generalization on the 
performance of optimal algorithm was tested on BayesNet, Mul-
tilayered perceptron, Projective Adaptive Resonance Theory 
(PART) and Logistic Model Trees algorithms based on existing 
performance benchmarks such as correctly classified instances, 
time to build, kappa statistics, sensitivity and specificity to deter-
mine the algorithms with great performances. The study showed 
that PART and Logistic Model Trees algorithms perform well 
than others. Hence, a logical approach to apply Empirical Risk 
Minimization technique on PART and Logistic Model Trees algo-
rithms is shown to give a detailed procedure of determining their 
empirical risk function to aid the decision of choosing an algo-
rithm to be the best fit classifier for data stratification. This there-
fore serves as a benchmark for selecting an optimal algorithm 
for stratification and prediction alongside other benchmarks.  
Keywords: Classification Algorithm, Machine Learning, Super-
vised Learning, Empirical Risk Minimization, Data Stratification 
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Introduction 

The field of Machine learning (ML) is one of the 

fastest growing areas of Computer Science with 

far-reaching applications [1]; and has proven to 

be of great value in data mining problems 

especially where large databases contain 

valuable implicit regularities that can only be 

discovered automatically. ML has achieved 

successes due to its strong theoretical 

foundations and its multidisciplinary approach by 

integrating aspects of Computer Science, 

Applied Mathematics, and Statistics, among 

others. It is known to have three learning 

approaches namely supervised, unsupervised 

and semi-supervised learning approaches, 

which have been explored in many areas due to 

data explosion. State of the art approaches in 

Computational Biology and Genomic Medicine is 

discovered to have been involved with recent 

advances in Machine Learning where there is 

variability of high dimensional datasets, and ML 

techniques have been widely applied to extract 

information from the biological data, which 

increases the accuracy of systems for data 

analysis, stratification and prediction [2]. The 

successes of the diverse ML algorithms used for 

classification and prediction were measured 

based on the performance of the algorithm on a 

particular problem domain, which is supported 

by the core property of learning algorithms that 

is expressed through the “No free lunch” 

theorem of ML which states that: no given 

algorithm will have the best possible 

performance across all problem domains. From 

existing literatures, accuracy, speed, time to 

learn, number of features, comprehensibility, 

robustness, scalability and interpretability were 

the benchmarks used for performance 

evaluation [3][4] and with these, there are 

generalizations on the performance(s) of the 

chosen algorithm (or classifier) to be the “best” 

or “optimal” one for classification and prediction. 

However, these aforementioned benchmarks do 

not guarantee the successful adoption of an 

algorithm, and has posed the question of what 

guarantees the choice of optimal algorithm that 

would not result to a loss or cause a risk in 

prediction? Empirical Risk Minimization (ERM) 

technique is one that can answer the posed 

question. ERM is another benchmark that based 

its philosophy on the possibility of approximating 

the expectation of the loss functions of a given 

hypothesis using its empirical mean [5]. 

Literature Review 

[6] theory of evolution describes learning as 

adaption to its environment. It was said that 

living organisms are not static, unchangeable 

entities, but change and evolve constantly; this 

is called learning. The better an organism is 

adapted to the environment, the higher the 

probability that it can reproduce, because certain 

features of an organism can be passed on from 

one generation to the next through reproduction. 

This concept is brought into Machine Learning 

that learn from data instances to become 

adapted (training) and then reproducing what 

has been learned on other data instances 

(testing). Learning is considered as a parameter 

for intelligent machines whereby deep 

understanding help in decision taking in a more 

optimized form and efficient method, and it is 

paramount to the study of data instances for 

building machines with explicit programming [7]. 

Machine Learning (ML) entails data-driven 

methods capable of mimicking, understanding 

and aiding human and biological information 

processing tasks; and is closely related with 

Artificial Intelligence (AI), with ML placing more 

emphasis on using data to drive and adapt the 

model from large datasets [8]. The motivation in 

ML is majorly to produce an algorithm that can 

either mimic or enhance human/biological 

performance [9]. Machine learning has been 

applied in solving the problem areas of 

classification, regression, ranking, clustering, 

and dimensionality reduction or manifold 

learning as summarized below.  

1. Classification: Classification problem 

assigns a category to each item.  

2. Regression: This predicts a real value for 

each item. In regression problem, the penalty 

for an incorrect prediction depends on the 
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magnitude of the difference between the true 

and predicted values, which is in contrast 

with the classification problem where there is 

typically no notion of closeness between 

various categories. An example or 

regression is the prediction of stock values or 

variations of economic variables.  

3. Ranking: Ranking order items according to 

some criterion. An instance of this is a web 

search which returns web pages relevant to 

a search query. Many other similar ranking 

problems arise in the context of the design of 

information extraction or natural language 

processing systems. 

4. Clustering: This partitions items into groups 

of similar regions. Clustering is often 

performed to analyze very large data sets. 

For example, in the context of social network 

analysis, clustering algorithms attempt to 

identify “communities” within large groups of 

people. 

5. Dimensionality reduction or manifold 

learning: This transforms an initial 

representation of items into a lower-

dimensional representation of these items 

while preserving some properties of the initial 

representation. A common example involves 

pre-processing digital images in computer 

vision tasks [9]. 

Empirical Risk Minimization 

Empirical Risk Minimization (ERM) is a theory in 

statistical learning that defines a family of 

learning algorithms and is used to give 

theoretical bounds on the performance of 

learning algorithms. It is a natural choice for a 

learning algorithm that helps to determine a 

good classification and regression learning 

function from a bad one [10]; and it is a common 

and useful technique with which a good 

approximation of globally optimal classifier can 

be obtained to give good statistical classification 

result. ERM is mostly used in determining the 

loss or risk function in supervised learning 

problems, and the major interest is to minimize 

the risk of choosing a hypothesis of a learning 

algorithm [11]. The ERM theory essentially relies 

on the study of maximal deviations between 

empirical averages and their expectations, 

under adequate complexity assumptions on the 

set of prediction rule candidates [12]. The ERM 

can only be computed when the distribution 

p(x,y) is known to the learning algorithm, and by 

averaging the loss function on the training set. 

Considering the situation in which the 

hypothesis h* among a fixed class of function ℋ 

for which the risk R(h) is minimal. The risk in this 

hypothesis is to be minimized using: 

h* = arg 𝑚𝑖𝑛ℎє𝐻 𝑅(ℎ) 

In order to minimize the risk, let X and Y be the 

learning function: h: X → Y 

Training set = (x1, y1), … (xm,ym) where xi ϵ X is 

an input and yi ϵ Y is the corresponding response 

(output) to give h(xi). Assuming there is a 

probability distribution P(x, y) over x and y, and 

the training set consist of m instances (x1, y1), … 

(xm,ym) drawn independently and identically 

distributed (i.i.d) from distribution P(x, y). This 

assumption allows the model of uncertainty in 

predictions.  The loss function L(𝑦,̂ y) is required 

to measures the difference between the 

predicting 𝑦̂ of a hypothesis and the expected or 

true outcome y [13]. The risk associated with the 

hypothesis h(x) is the expectation of the loss 

function: 

 R(h) = E[L(h(x), y)] = ∫ 𝐿(ℎ(𝑥), 𝑦)𝑑𝑃(𝑋, 𝑌) 

In this case, the learning algorithm chosen for 

prediction finds the hypothesis h* among a fixed 

class of function ℍ  for which the risk R(h) is 

minimal: 

  h* = arg 𝑚𝑖𝑛ℎє𝐻 𝑅(ℎ) 

Loss Function 

Loss function (LF) is useful in measuring how 

good a classifier is. The difference between f(xi) 

and yi in the training set is measured using a loss 

function; a LF is large when the difference 

between the prediction f(xi) and actual label is 

large and vice versa [14]. The simplest loss 

function is the zero-one (0/1) loss function. The 

function equals 1 when f(xi) ≠ yi and 0 otherwise. 

The “0/1” loss function is not widely used 

because it is not convex and differentiable but 
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Convex surrogates of the “0/1” loss function are 

highly preferred because of the computational 

and theoretical features that convexity has [15]. 

 Given a function f, a loss function L, and a 

probability distribution𝑃(𝑥, 𝑦), the expected risk 

or true risk of f  is given to minimize the loss of 

test data as: 

RL,P(f)= ∫ 𝐿(𝑥, 𝑦, 𝑓(𝑥))𝑑𝑃(𝑥, 𝑦)
𝑥∗𝑦

,dP(x,y)= P(x,y) 

dydx = Ε[L(X, Y, f(x))] 

where 𝐿(𝑥, 𝑦, 𝑓(𝑥)): Loss function 

            𝑃(𝑥, 𝑦): Distribution of the data 

Empirical Risk Minimization function 

The ERM function is computed when the 

distribution p(x,y) is known to the learning 

algorithm, and by averaging the loss function on 

the training set.  It is an approximation that 

replaces R(h). The empirical risk is introduced 

as: 

Remp(h) = 
1

𝑚
∑ 𝐿(h(𝑥𝑖), 𝑦𝑖)𝑚

𝑖=1  

However, the principles’ interest is to choose a 

hypothesis ℎ̂ that minimizes the empirical risk  

 ℎ̂= arg 𝑚𝑖𝑛ℎє𝐻 𝑅𝑒𝑚𝑝(h) 

The ERM function is important in evaluating the 

performance of the function R(h) by using non-

negative real valued los function  L(𝑦,̂ y), which 

measures how different the prediction 𝑦̂ is from 

the true outcome y. ERM can also be used to 

compute M-estimators [16] which is obtained as 

the minima of sums of functions of the data. A 

regularization term R(·) on Remp can be used to 

prevent overfitting to give regularized ERM. The 

regularization term is seen as stabilizer of 

learning algorithm and it explains the 

phenomenon that changing a data point in the 

training set does not affect the performance of 

output classifier too much. This indicates how to 

control the trade-off between empirical risk and 

the difference between the true and empirical 

risk. Lagrange duality indicates that when we 

want to find linear classifier f that minimizes ERM 

with bounded norm ∥ f ∥ ≤ C for some constant 

C, we can find f by minimizing the regularized 

ERM for a suitable choice of Lagrange 

coefficient λ [17][18].  

Related Works 

The related works is based on the classification 

and prediction algorithms for data stratification; 

and on the application of ERM technique in 

classification and prediction 

[19] proposed a CPM that used Artificial Neural 

Network (ANN) algorithm to distinguish 

prognostically good and bad cases of Chronic 

Myeloid Leukemia (CML). A total of 40 patients 

with CML who developed blast crisis or 

proceeded in the accelerated phase were 

selected, and a conclusion was arrived at that 

ANN algorithm was successfully used to develop 

a model which is able to classify prognostically 

good and bad cases of CML. Nevertheless, the 

number of dataset used in learning is drastically 

too small and cannot give a reasonable 

prognostic decision. [20] developed machine 

learning classifiers based on Logistic 

Regression, Bayesian Network, Multilayer 

Perceptron, Support Vector Machine, and 

Alternating Decision Tree (ADTree) to predict 

which patients would require postoperative 

Femoral Nerve Block (FNB) on 349 patients who 

underwent ACL reconstruction at outpatient 

surgical facility. The Machine Learning 

algorithms specifically the ADTree outperformed 

traditional Logistic Regression with regards to 

Receiver Operating Curve (ROC), and vice-

versa with regard to kappa statistics and 

percentage of correctly classified. A comparative 

analysis of algorithms showed that DTs, ANNs 

and Bayesian are the well-performing algorithms 

used for disease diagnosis, while ANNs is the 

well-performing algorithm, followed by Bayesian, 

DTs and Fuzzy algorithms. This study based 

prediction on the ROC, Kappa statistics, 

accuracy percentage and time of learning but the 

minimum empirical risk of selecting the algorithm 

was not regarded. [21] analyzed the 

performance of PART and PART based on K-

Means Clustering classification rule algorithms 

on heart disease dataset collected from UCI 

Repository. The dataset contains 303 instances 
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and 14 selected attributes. The pre-processed 

heart disease dataset was grouped using the K-

means algorithm with the K=2 values on classes 

to cluster evaluation testing mode. 10-fold cross 

validation method was used to measure the 

unbiased estimate of the prediction model. The 

accuracy of K-Means Clustering, PART and 

PART based on K-Means Clustering are 

81.08%, 79.05% and 84.12% respectively. The 

PART algorithm generated 26 rules while PART 

through Simple K-Means Clustering generated 

11 rules. The study deduced the best fit 

algorithm based on accuracy and the number of 

rules alone without considering their empirical 

risk function. [22] proposed an Area Under 

Curve (AUC) optimization method for 

multibiomarker panel identification named 

Nearest Centroid Classifier for AUC optimization 

(NCC-AUC). The study converted the survival 

time regression problem to a binary classification 

problem. An optimization model was formulated 

to directly maximize AUC and minimize the 

number of selected features to construct a 

predictor in the nearest centroid classifier 

framework. NCC-AUC showed its great 

performance by validating both in genomic data 

of breast cancer and clinical data of stage IB 

Non- Small-Cell Lung Cancer (NSCLC) where 

NCC-AUC outperforms Support Vector Machine 

(SVM) and Support Vector Machine-based 

Recursive Feature Elimination (SVM-RFE) in 

classification accuracy. However, this model 

only determined the accuracy and number of 

features, without considering other methods and 

the empirical risk function. [23] developed a 

neural network CPM to diagnose Pancreatic 

Cancer disease. Patient’s previous medical 

records containing the symptoms as well as the 

Doctor’s opinion were used in training the ANN 

to detect the presence or absence of pancreatic 

cancer in that patient. Matlab R2011a’s toolbox 

for neural network was used for performance 

evaluation of the network. The study used 

Levenberg-Marquardt algorithm for back 

propagation for training the network where 

training stops automatically. This study did not 

consider any comparative measure for selecting 

ANN for detecting the presence or absence of 

pancreatic cancer in the patient. The dataset of 

120 is equivalently small for detection and no 

validation metrics was considered. [24] 

demonstrated how Deep Learning and Bayesian 

optimization methods were used in predicting 

clinical outcomes from large scale cancer 

genomic profiles for survival analysis, and 

described a framework for interpreting deep 

survival models using a risk back propagation 

technique. The framework was implemented in 

Python for training, evaluation and interpretation 

of deep survival models. It was illustrated that 

deep survival models can successfully transfer 

information across diseases to improve 

prognostic accuracy. In part A of the model, the 

molecular platforms produce data that can be 

used for precision prognostication with learning 

algorithms; in B, Deep survival models in neural 

networks was driven by a Cox survival model at 

the output layer and model likelihood was used 

to adaptively train the network to improve the 

statistical likelihood of the overall survival 

prediction. This model combined two algorithms 

for prediction and it was successful, however, 

despite the strength of these two algorithms, the 

drawback is that the two algorithms cannot work 

together because Bayesian networks deals with 

probabilistic problems while Deep learning does 

not.  

Likewise on the application of Empirical Risk 

Minimization technique in prediction, [25] used 

ERM to produce privacy-preserving 

approximations of classifiers on adult data set to 

predict whether the annual income of an 

individual is below or above $50,000, and on 

another dataset to predict whether a network 

connection is a denial-of-service attack or not. 

Sensitivity method and objective perturbation 

algorithms were provided for privacy-preserving 

ERM by tuning algorithm on logistic regression 

and Support Vector Machine. However, it was 

discovered that the objective perturbation 

outperforms the sensitivity methods. [26] 

presented a supervised ranking framework for 
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sequential event prediction that can be adapted 

to fit a wide range of applications, and proposed 

two ranking models. The study showed how to 

specify general loss function to applications in 

email recipient recommendation, patient 

condition prediction, and an online grocery store 

recommender system. In the online grocery 

store recommender system application, 

predictions were allowed to alter the sequence 

of events resulting in a discontinuous loss 

function. Using the fact that the variable space 

can be partitioned into convex sets over which 

the loss function is convex, two algorithms were 

presented for approximately minimizing the loss. 

The result showed that ERM-based algorithms 

performed better than the max-confidence and 

cosine similarity baselines. In a study by [27], 

ERM was used to deal with the data-driven 

selection of multidimensional and possibly 

anisotropic bandwidths in the general framework 

of kernel. A universal selection rule that leads to 

optimal adaptive results in a large variety of 

statistical models with errors in variables was 

presented. [5] presented communication-

efficient algorithms for statistical optimization 

whereby the algorithms achieve the best 

possible statistical accuracy and suffer the least 

possible computation overhead;  proposed a 

distributed optimization algorithm using 

empirical risk minimization to determine the 

communication cost which is independent of the 

data size, and is only weakly dependent on the 

number of machines and then designed and 

implemented a general framework for 

parallelizing sequential algorithms. [11] 

introduced the local, global and distributed 

models for experiments and used two methods 

such as average and feature methods to analyze 

their privacy guarantee under the sense of 

differential privacy. The methods were tested in 

distributed model using the differential private 

empirical risk minimization and it was discovered 

that noise affect the final performance of these 

two methods. [28] identified the different 

approaches to solve large-scale ERM problems 

and focused on incremental and stochastic 

methods which split the training samples into 

smaller sets across time to lower the 

computation burden of traditional descent 

algorithms. Consequently, convergent 

stochastic variants of quasi-Newton methods 

which do not require computation of the 

objective Hessian was developed and analyzed 

to approximate the curvature using gradient 

information.   

Methodology 

A logical approach for Empirical Risk 

Minimization in machine learning for Data 

Stratification is developed to aid a better 

grouping of Chronic Myeloid Leukemia disease 

dataset. While computing ERM on classification 

algorithms, four classification algorithms 

(BayesNet, Multilayered perceptron, PART and 

Logistic Model Trees) were trained and validated 

to choose two classifiers that has the best 

performances based on correctly classified 

instances, the time taken to build, kappa 

statistics, sensitivity and specificity benchmarks. 

Hold-out and 10-fold cross-validation evaluation 

techniques were used to evaluate the 

performance of the algorithms on all the data 

points that are independently and identically 

distributed (i.i.d). Then, empirical minimization 

technique is performed on the optimal classifier 

to determine its minimum empirical risk function.   

While determining the empirical risk 

minimization function, the learning hypothesis  h: 

X → R is set with the training set = (x1, r1), … (xm, 

rm) where xi ϵ X is the input and the output is ri ϵ 

ℛ to give h(xi), while the probability distribution 

P(x, r) over x and r, is independently and 

identically distributed (i.i.d) from distribution P(x, 

r). The loss function L(𝓇̂ , r) is determined to 

measure the difference between the predicting 𝑟̂ 

of the hypothesis and the expected outcome r 

using: R(h) = E[L(h(x), r)] = ∫ 𝐿(ℎ(𝑥), 𝑟)𝑑𝑃(𝑥, 𝑟) 

to find the hypothesis h* among a fixed class of 

function ℍ for which the risk R(h) is minimal: h* 

= arg 𝑚𝑖𝑛ℎє𝐻 𝑅(ℎ) . The empirical risk 

minimization function will then be computed 

using: 



Taiwo et al., RJMCS, 2017; 1:3 

http://escipub.com/research-journal-of-mathematics-and-computer-science/                      7 

Remp(h) = 
1

𝑚
∑ 𝐿(h(𝑥𝑖), 𝑟𝑖)

𝑚
𝑖=1   to choose the 

classifier with minimum empirical risk.  

Dataset Description 

The dataset used in this study is the Chronic 

Myeloid Leukemia data obtained from Obafemi 

Awolowo University Teaching Hospitals 

Complex (OAUTHC). The dataset contains one 

thousand, six hundred and forty (1640) patients’ 

data between the periods of 2003 to 2017. The 

input variable Basophil (x1) and Spleen size (x2) 

will be used as the training inputs to generate the 

output risk score (r), which will inform the 

grouping of the patients to either low risk or high 

risk groups. The dataset will be converted into 

Comma Separated Values (.csv) format and a 

data repository that interfaces with Waikato 

Environment for Knowledge Analysis (WEKA) 

will be created for the data. The grouping of the 

variables is shown in table 1.  

Table 1: Description of variables  

S/N Variable Name Variable format Variable Type Data Type 

1. Basophil count (x1)  Continuous Numeric 

2. Spleen size(x2)  Continuous Numeric 

3. EUTOS Score  Continuous Numeric 

4. Risk Group (r) Low Risk, High Risk Categorical Nominal 

The risk group is the response variable while 

other variables are predictors. Each variable is 

suitably categorized to accommodate all the 

available information.  

Result Discussion 

The result of the evaluation of these algorithms 

showed that in hold-out (66%) and 10-fold cross 

validation, both PART and Logistic Model Trees 

performs well but have their differences. In hold-

out (66%), PART algorithm has the highest value 

for correctly classified instances with 99.82%, 

has the lowest time to build with 0.02s, kappa 

statistics of 99.64%, sensitivity of 99.60% and 

specificity of 99.99%; while Logistic Model Trees 

has 99.64% of correctly classified instances, 

0.09s time to build the model, kappa statistics of 

99.27%, sensitivity of 99.20%, and specificity of 

99.99%; whereas in 10-fold cross validation, 

Logistic Model Trees have a higher percentage 

of correctly classified instances with 99.70%, 

higher time of 0.19s to build the model, higher 

kappa statistics of 99.51%, sensitivity of 99.47% 

and specificity of 99.98%, while PART has 

99.51% of correctly classified instances, has the 

lower time to build with 0.1s, kappa statistics of 

99.02%, sensitivity of 99.47% and specificity of 

99.55% as shown in table 2 .

Table 2: Evaluation of 4 Classifiers  

 Hold-Out (66% train, remainder test) 10-Cross Validation 

S/

N 

Classifier CCI 

(%) 

T (s) KS 

(%) 

Se (%) Sp (%) CCI 

(%) 

T (s) KS 

(%) 

Se (%) Sp 

(%) 

1 BayesNet 93.37 0.03 86.65 94.80 92.20 95.43 0.03 90.82 96.17 94.78 

2 Multilayered 

perceptron 

96.95 1.35 93.88 99.99 94.48 98.78 1.33 97.55 98.94 98.64 

3 PART 99.82 0.02 99.64 99.60 99.99 99.51 0.10 99.02 99.47 99.55 

4 Logistic 

Model Trees 

99.64 0.09 99.27 99.20 99.99 99.70 0.19 99.51 99.47 99.98 

Correctly Classified Instances = CCI, Time Taken to Build = T, Kappa Statistics = KS, Sensitivity = Se, Specificity 

= Sp 
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In essence, Empirical Risk Minimization 

technique is applied on both PART and Logistic 

Model Trees algorithms to id the decision of 

choosing the classifier with minimum risk 

function. 

Empirical Risk Minimization Problem 

Formulation 

In order to obtain the desired results  some 

assumptions on the class of the dataset were 

required. Given a CML dataset 𝒟  of n 

individuals, where each observation di lies in this 

domain, the classifier that has the minimum 

empirical risk by computing the average loss 

function on the training sets is considered.  

Training Set 

 𝒟 = {Input set, Output} = {Basophil count, 

Spleen size, Risk score} = {B, S, R} 

Input Set 

 𝒳 = {ℬ, 𝒮} = {𝓍1, 𝓍2} 

where 𝓍1 = ℬ = {b1, b2, …, bn} 

   𝓍2 = 𝒮 = {s1, s2, …, sn} 

Output Set 

 ℛ = {r1, r2, …, rn} 

There are two spaces of objects 𝒳 and ℛ which 

will learn a function h: 𝒳 → ℛ  in which:  

 Output r ∈ ℛ given 𝓍 ∈ 𝒳 

We have the training set (𝓍 i, 𝓇 i), … (𝓍n, 𝓇n), 

where 𝓍 i ∈  𝒳  is an input and 𝓇 i ∈  ℛ  is the 

corresponding output we wish to get from h (𝓍i). 

It is assumed that there is a joint probability 

distribution P( 𝓍 , 𝓇 ) over 𝓍  and 𝓇 , and the 

training set consist of 𝓂 instances (𝓍 i, 𝓇 i), … 

(𝓍m, 𝓇 m), drawn independently and identically 

distributed (i.i.d) from distribution P(𝓍, 𝓇). 

 Where n(𝓂) = {ℬ, 𝒮} = 2 

 ∴ 𝓂 = 2 

1. Loss Function 

Firstly, the concept of a loss function L is 

introduced and it is assumed that there are non-

negative real-valued Loss function L(𝑟,̂ 𝓇) which 

measures how the prediction 𝓇̂ of a hypothesis 

is different from the expected or true outcome 𝓇.  

The risk associated with the hypothesis h(x) is 

the expectation of the Loss function 𝐿: 

R(h) = E[L(h(x), 𝓇 )] = 

∫ 𝐿(ℎ(𝑥), 𝓇)𝑑𝑃(𝑥, 𝓇)………..Equation 1 

However, the ultimate goal is to find a hypothesis 

h* among a fixed class of function ℋ for which 

the risk R(h) is minimal: 

 h* = arg 𝑚𝑖𝑛ℎє𝐻 𝑅(ℎ)…………Equation 2 

2. Expected Risk 

With a given a function f, the loss function L, and 

a probability distribution 𝑃(𝑥, 𝓇), the expected 

risk or true risk of f  is given to minimize the loss 

of test data. 

 RL,P(f) = ∫ 𝐿(𝑥, 𝓇, 𝑓(𝑥))𝑑𝑃(𝑥, 𝓇)
𝑥∗𝓇

, dP(x,  𝓇 )= 

P(x, 𝓇) d 𝓇dx 

 = Ε[L(X, ℛ, f(x))] …….Equation 3 

where 𝐿(𝑥, 𝓇, 𝑓(𝑥)): Loss function 

            𝑃(𝑥, 𝓇): Distribution of the data 

To compute the Empirical Risk Minimization 

Function 

To compute the Empirical Risk Minimization 

function, the risk R(h) cannot be computed 

because the distribution P(x,𝓇) is unknown to 

the learning algorithm. An approximation 

function by averaging the loss function can be 

computed an on the training set to replace with 

R(h) where the empirical risk is introduced as: 

Remp(h) = 
1

𝑚
∑ 𝐿(h(𝑥𝑖), 𝓇𝑖)𝑚

𝑖=1 …………Equation 4 

Remp(h) = 
1

2
∑ 𝐿(h(𝑥𝑖), 𝓇𝑖)

2
𝑖=1 …………..Equation 5 

However, the interest is to choose a hypothesis 

ℎ̂ that minimizes the empirical risk  

 ℎ̂= arg 𝑚𝑖𝑛ℎє𝐻 𝑅𝑒𝑚𝑝(h) 

Hence, the learning algorithm defined by the 

ERM principle consists in solving the above 

problem. The ERM can be tested on the two 

classifiers that perform well so as to identify the 

classifier with the minimum risk that can serve as 

the “best fit” classifier. Hence the logical 

approach to determine the empirical risk 

minimization function for in machine learning for 

CML data stratification is shown in figure 1.  
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Conclusion  

The idea of generalizing on the performance of 

algorithms to be optimal was tested on 

BayesNet, Multilayered perceptron, Projective 

Adaptive Resonance Theory (PART) and 

Logistic Model Trees algorithms based on 

existing performance benchmarks such as 

correctly classified instances, time to build, 

kappa statistics, sensitivity and specificity to 

determine the algorithms with great 

Figure 1: A Logical Approach for Empirical Risk Minimization Data Stratification Model 
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Training data 1 … n where n = 2 Test data 

Compute h: 𝒳 → ℛ   

Compute R(h) = E[L(h(x), 𝓇)] = ∫ 𝐿(ℎ(𝑥), 𝓇)𝑑𝑃(𝑥, 𝓇) 
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Compute RL,P(f) = ∫ 𝐿(𝑥, 𝓇, 𝑓(𝑥))𝑑𝑃(𝑥, 𝓇)
⬚

𝑥∗𝓇
, dP(x, 𝓇)= P(x, 𝓇) d 𝓇dx 

Compute Remp(h) = 
1

𝑚
∑ 𝐿(h(𝑥𝑖), 𝓇𝑖)𝑚

𝑖=1  

No 
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performances. It was discovered that PART and 

Logistic Model Trees algorithms perform well 

than others. Hence, a logical approach to apply 

Empirical Risk Minimization technique on PART 

and Logistic Model Trees algorithms is shown to 

give a detailed procedure of determining their 

empirical risk function to aid the decision of 

choosing an algorithm to be the best fit classifier 

for data stratification. This therefore serves as a 

benchmark for selecting an optimal algorithm for 

stratification and prediction alongside other 

benchmarks.  
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