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An approximation algorithm for minimizing congestion in the single-
source k-splittable flow

In the traditional multi-commodity transmission networks, the 
number of paths each commodity can use is unrestricted, and 
the commodities can use arbitrary number of paths to transmit 
the flow. However, in the real transmission networks, too many 
paths will increase the total transmission cost of the network and 
also cause difficulties in the management of the network. In 2002, 
Baier[1] proposed the k -splittable flow problem, in which each 
commodity can only use a limited number of paths to transmit 
the flow. In this paper, we study the k -splittable multi-commodity 
transmission flow problem with the objective of minimizing con-
gestion and cost. We propose an approximation algorithm with 
performance ratio  for congestion and cost in the sin-
gle-source case, in which mink is the minimum value of the number 
of paths each commodity can use. The congestion reflects the to-
tal load of the network to some extent. The main aim of minimiz-
ing congestion is to distribute the demands of the commodities 
on the network in a balanced way, avoiding the case that some 
edge is used too much. By this way, the performance of the net-
work as a whole can be guaranteed and more commodities can 
be served.

Keywords: k -splittable flow, congestion minimization, approxi-
mation algorithm
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Introduction

In the traditional multi-commodity flow problems, 
a directed graph ( , )G V E= is given with vertex 
setV and edge set E in which | |V n= and | |E m=
. For each edge e E∈ , denote 0eu > and 0ec >
be its arc capacity and unit cost, respectively. 
A set of commodities denoted by L needs to be 
transmitted in the network. Each commodity
l L∈ has a certain amount of demand ld to be 
transmitted from source node ls to destination 
node lt . The number of paths each commodity 
can use is not restricted, while in practice, 
large number of paths for each commodity may 
reduce the central management of the network. 
Baier[1] proposed the k -splittable flow problem. 
The only difference from the traditional multi-
commodity flow problem is that the number of 
paths each commodity can use is restricted, that 
is, each commodity l L∈ can only use limited 
number of paths, say lk to transmit its flow. If lk
=1, l L∀ ∈ , this problem is in fact the unsplittable 
flow problem (UFP) proposed by Kleinberg[2]. 
If | |lk E≥ , l L∀ ∈ , it is reduced to the traditional 
maximum flow problem. For the multi-commodity 
flow problem, each commodity using only one 
path will make the network too loaded while 
too many paths will increase the difficulty in the 
management of the network. In the k -splittable 
flow problem, a mediate case is considered, that 
is1< | |,lk E< l L∀ ∈ .

For the unsplittable flow problem, Kleinberg[2] 
introduced several optimization versions. In the 
“minimization congestion” version, the task is to 
find the smallest valueλ such that there exists an 
unsplittable flow that uses at most aλ -fraction 
of the capacity of any edge. In the “maximum 
concurrent flow” problem, the aim is to maximize 
the routable fraction of the demand, i.e., find 
the maximal factor by which the given demands 
can be multiplied such that there still exists a 
feasible unsplittable flow satisfying the resulting 
demands. It can be proven that any solution to 
the minimum congestion problem of valueλ
can be turned into a solution to the maximum 
concurrent flow problem of value1/λ , and vice 
versa. The “minimize number of rounds” version 
asks for a partition of the set of commodities into 
a minimum number of subsets(rounds) and a 
feasible unsplittable flow for each subset. At last, 
the “maximum routable demands” problem is to 
find a feasible unsplittable flow for a subset of 

demands maximizing the sum of demands in the 
subset.

For the unsplittable flow problem, Erlebach.et.al.
[3] proved that for arbitraryε , obtaining an ap-
proximation algorithm of minimizing congestion 
and cost with performance ratio better than (2-
ε ,1) is NP-hard. The unsplittable flow prob-
lem is much easier if all commodities share a 
common single source. However, the resulting 
single-source unsplittable flow problem still re-
mains strongly NP-hard. Some approximation 
algorithms with constant performance ratio of 
congestion have been developed for the sin-
gle-source UFP. See references [4]-[6].

As for the k -splittable flow problem, researchers 
generalize the above optimization versions and 
there are a lot of study on the related problems. 
Baier.et.al. [7] solved the maximum Single- 
and Multi-commodity k -splittable flow problem 
using approximation algorithms. The authors 
proved that the maximum single-commodity k
-splittable flow problem is NP-hard in the strong 
sense for directed graphs. Koch.et.al.[8] studied 
the single commodity maximum k -splittable flow 
problem. It is proved that when k is a constant, 
this problem is strongly NP-hard and obtaining 
an approximation algorithm with performance 
ratio better than / ( 1)k k + is NP-hard. While when
k is not a constant, obtaining an approximation 
algorithm with performance ratio better than 5/6 
is NP-hard. Koch.et.al.[9] considered the same 
problem by giving an algorithm with two stages, 
first a packing step and second a routing step.

Kolliopoulos[10] researched the single-source 
2-splittable minimization congestion problem, 
each commodity can only use at most two paths. 
Using the rounding down strategy, turn each 
commodity into two small commodities and by this 
way the 2-splittable flow problem is transformed 
into an unsplittable flow problem. Using the 
related approximation algorithm for the UFP, the 
authors obtained an unsplittable flow that satisfies 
the demands of the small commodities. Then by 
scaling a suitable constant, a 2-splittable flow 
satisfying the original demands with performance 
ratio of congestion and cost (2,1) is obtained. 
Salazar.et.al.[11] study the single-source k
-splittable flow problem in which the number of 
paths each commodity can use is all equal to k . 
Authors designed an approximation algorithm for 
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this problem by using rounding up strategy and 
obtained the performance ratio (1+1/k+1/(2k-1), 
1) for congestion and cost.

In this paper, we consider the single-source
k -splittable flow problem. We generalize the 
rounding down strategy used in [10] to the
k -splittable flow and give an approximation 
algorithm with performance ratio

min

3 1( ,1)
2 1 (1/ 2)k⋅

−
for congestion and cost. When mink  increases, 
the congestion ratio

min

3 1
2 1 (1/ 2)k⋅

−
decreases, which 

is reasonable in the practice.

Problem description and the approximation 
algorithm

In this paper, we consider the single-source k
-splittable flow problem. Denote the common sin-
gle source node by s and suppose that the num-
ber of paths each commodity can use is at least 
2. The balance condition holds in the network, 
that is, max mind u≤ , where max : max{ : }ld d l L= ∈ ,

min : min{ : }eu u e E= ∈ . For analysis simplicity, we 
scale a suitable number, such as min1/u , to all the 
demand values and all the edge capacity values 
such that max min1d u≤ ≤ We also suppose that a 
feasible fractional flow satisfying all the demands 
of the commodities exists in the network, denote 
it by 0f . We propose an approximation algorithm, 
denote it by A . The main steps of algorithm A are 
as follows.

Algorithm A  

Step1: For each commodity l L∈ , transmit it into 
several small commodities.

If 1ld = , let 1 21,  1l lq q= − = − ，then 1 22 2
l lq q

ld = + ;

If 1ld < , let 1

1 2 2 2log , log 2 , ,
lql l

l lq d q d= = −      

11
2log 2 2 ,

ll
jqql

j lq d − = − − −
 

 ，

If there is an integer lj k< such that
12 2

ll
jqq

ld = + + , the above iteration stops after
j iterations and j negative integers 1 2,  , ,  l l l

jq q q
are obtained. Otherwise, the above iteration 
stops after proceeding lk iterations, obtaining lk
negative integers 1 2,  , ,  l

l l l
k

q q q . 

 The above iterations transform each commodity
l into not larger than lk small commodities with 
the same source node s and sink node lt . The 
demands of the small commodities are all 

negative powers of 2 and we denote the total 
demands of the small commodities by ld .

Step2: For each commodity l L∈ , find paths from
0f  for commodity l that having the maximum unit 

cost iteratively. Once a path is found, deleting 
its whole or partial flow from the path, until the 
remaining flow from s to lt is ld . By this way, we 
obtain a feasible fractional flow that satisfies all 
the small commodities, denote it by 1f .

Step3: Beginning with 1f , adopt the related algo-
rithm for the unsplittable flow problem and obtain 
an unsplittable flow that satisfies the demands of 
all the small commodities. 

Step4: For each l L∈ , multiply the constant
/l ld d to the flow value of each path used by the 

small commodities corresponding to l such that 
the new total flow of these paths is equal to the 
original demand value ld of commodity l .

For algorithm A , we have some remarks as fol-
lows.

•The feasible fractional flow 0f can be obtained 
by using the classical maximum flow-minimum 
cost algorithm.

• In Step2, the fractional feasible flow 1f can 
be obtained by proceeding finite number of 
shortest path algorithm. We can do it as fol-
lows: for each edge e E∈ , define its weight by

:e ew W c= − in whichW is a constant such that
max max, : max{ , }eW c c c e E> = ∈ . Then a shortest 

weight path is corresponding to a maximum unit 
cost path.

• In Step3, we can use the algorithm proposed 
in [5] to obtain an unsplittable flow satisfying the 
small commodities.

Algorithm analysis

First we estimate the ratio of ld and ld , denote 
it by ,  : /l l l ld dα α = . If ,  1l l ld d α= = . Otherwise, 
by Step1, we know that the commodity l must be 
transformed into lk small commodities with the 
demand values 1 22 ,  2 ,  ,  2

ll l lk
qq q 

,respectively,and 1 22 2 + 2
ll l lk

qq q
ld = + + . By 

the construction of 1 2,  , ,  l
l l l

k
q q q , we have that

 1 2 2log log 1l
l lq d d= > −   , further we have 
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 1
12
2

lq
ld>                              (3.1)

Since 1 1
2 2 2log ( 2 ) log ( 2 ) 1

l lq ql
l lq d d = − > − −  , we 

have 

 2 12 2 2
l lq q

ld⋅ > −                           (3.2)

(3.1)+(3.2) we have that 

  1 2
12 (2 2 ) ( 1)
2

l lq q
ld⋅ + > +                         (3.3)

Now suppose that for 2j > , we have 

11 212 (2 2 ) ( 1 2 )
2

ll
jqqj j

ld− −⋅ + + > + + +             (3.4)

S i n c e 
1 1

1 2 2log ( 2 2 ) log ( 2 2 ) 1
l ll l
j jq qq ql

j l lq d d+
 = − − − > − − − −
 

 

, we have 
1 11 12 2 2 2 (2 2 )

l ll
j jq qqj j j

ld+ − −⋅ > ⋅ − + +                (3.5)

(3.4)+(3.5) we can obtain that 
11 112 (2 2 ) ( 1 2 )

2
ll
jqqj j

ld+ −⋅ + + > + + +               (3.6)

When proceeding the lk -th iteration, we have 
11 212 (2 2 ) ( 1 2 )

2

lll llk
qqk k

ld− −⋅ + + > + + +            (3.7)

That is 1 2
1

1 12 2 ( 1 2 )
22

ll llk
l

qq k
lk

d−

−
+ + > + + +  , 

by further computing we can have that 

  1
12 2 (1 ( ) )
2

ll llk
qq k

l ld d= + + > −                     (3.8)

Thus we have

 1
11 ( )
2

l

l
l

kl

d
d

α = <
−

                   (3.9)

By the above analysis, for each commodity l L∈
, we obtain the upper bound on the ratio lα  be-
tween the original demand value ld of commodity
l and the total demand value of the small com-
modities corresponding to l . In order to get the 
feasible flow 1f from 0f that satisfies the small 

commodities, the algorithm find the paths with 
maximum unit cost iteratively, deleting the all or 
partial flow from the paths, until the remaining 
flow from s to lt is exactly ld . It is easy to see that 
for each 1 0,  ( ) ( )e E f e f e∈ ≤ .

Reference [10] adopted the Theorem on the un-
splittable flow problem in [5], that is Theorem 1 
as follows.

Theorem 1[5]: Given an UFP instance where all 
demands are powers of 1/2 and an initial frac-
tional flow solution, there is an algorithm, called 
POWER-ALG, which finds an unsplittable flow 
that violates the capacity of any edge by at most 

max mind d−  and whose cost is bounded by the 
cost of the initial fractional flow.

For Algorithm A we have the following important 
theorem:

Theorem 2: For any instance of a single-source
k -splittable flow problem, suppose that 

max min1d u≤ ≤ and there is a fractional flow 0f that 
satisfies all the demands of the commodities in 
the set L , Algorithm A can obtain a k -splittable 
flow f from 0f that satisfies all the demands of 
the commodities such that the flow value ( )f e of 
each edge e satisfies

min

3 1( )
2 1 (1/ 2)e kf e u< ⋅ ⋅

−
in 

which min min{ : }lk k l L= ∈ , and the cost ( )c f of f

is not larger than the cost 0( )c f of 0f .

Proof: By algorithm A we know that each orig-
inal commodity is transformed into some small 
commodities. Suppose that maxd  

is the largest 
demand value of all the small commodities, it is 
easy to see that max

1
2

d  
≤ . Since 1f is the flow 

that satisfies all the small commodities, using 
the algorithm POWER-ALG, we can obtain an 
unsplittable flow that satisfies all the small com-
modities, denote the UFP by 2f . By theorem 1 
we know that 2 1( ) ( )c f c f≤ and for each e E∈ we 

have 2 1 max( ) ( )f e f e d  
≤ + . In 2f each small com

modity use only one path to transmit the flow, 
denote lR be the transmitting paths of the small 
commodities corresponding to commodity l . We 
have that

    2 ( )
l

l
p R

d f p
∈

= ∑                              (3.10)

In which 2 ( )f p is the flow value of path lp R∈ in 
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2f . Define : { : }l l
eR p R e p= ∈ ∈ by the paths of

lR that using the edge e . For e E∈ we have that

2 2( ) ( )l
el L p R

f e f p
∈ ∈

=∑ ∑ . In order 

to obtain a k -splittable flow that satisfies the de-
mand of the original commodities, for each l L∈ , 
multiply the path flow values of the paths in lR by

lα , and we obtain a new flow, denote it by f . For 
each edge e E∈ , we have that

        

2 2

2

2 1

0

( ) ( ) ( )

       max{ : } ( )

1       max{ : } ( ) max{ : } ( ( ) )
2

1 1      max{ : } ( ( ) ) max{ : } ( )
2 2

3     max{ : }
2

l l
e e

l
e

l ll L p R l L p R

l l L p R

l l

l l e e

l e

f e f p f p

l L f p

l L f e l L f e

l L f e l L u u

l L u

α α

α

α α

α α

α

∈ ∈ ∈ ∈

∈ ∈

= ⋅ =

≤ ∈ ⋅

= ∈ ⋅ ≤ ∈ ⋅ +

≤ ∈ ⋅ + ≤ ∈ ⋅ +

= ⋅ ∈ ⋅

∑ ∑ ∑ ∑
∑ ∑

Since 

min

1 1max{ : } max{ : }
1 (1/ 2)1 (1/ 2)

ll kk
l L l Lα ∈ < ∈ =

−− ,  

we prove the first part of the Theorem.

Next we prove the second part of the Theorem. 
Define :p ee p

c c
∈

=∑ be the unit cost of path p . In 
Step2, in order to obtain the flow 1f  from 0f  that 
satisfies the small commodities, the algorithm 
finds the maximum unit cost paths from 0f  itera-
tively, decreases the whole or partial flow from 0f
. Denote these paths with decreased flow by lQ
, we have that 

0 ( )l l lp Q
f p d d

∈
= −∑                         (3.11)

In which 0 ( )f p denotes the decreased 
flow value of p from 0f . Further we have 

0 0 1( ) ( ) ( )l pl L p Q
f p c c f c f

∈ ∈
⋅ = −∑ ∑                 (3.12)

Let

 max min( ) max{ : },  ( ) min{ : }l l l l
p pc R c p R c Q c p Q= ∈ = ∈

, by the algorithm we know that      

max min( ) ( )l lc R c Q≤                           (3.13)

By the construction of f we have that 

2 2 2

2 2 2 max 2

2 max 2 max

( ) ( ) ( ( ) ( 1) ( ) )

       ( ) ( 1) ( ) ( ) ( ) ( 1) ( )

       ( ) ( )( 1) ( ) ( )( )

       

l l

l l

l p p l pl L p R l L p R

l
l p ll L p R l L p R

l l
l l l ll L l L

c f f p c f p c f p c

c f f p c c f c R f p

c f c R d c f c R d d

α α

α α

α

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

∈ ∈

= ⋅ ⋅ = ⋅ + − ⋅

= + − ⋅ ≤ + −

= + − ⋅ = + −

∑ ∑ ∑ ∑
∑ ∑ ∑ ∑
∑ ∑

2 min 2 min 0

2 0 2 0 1 0

( ) ( )( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( ) ( )

l

l

l l
l ll L l L p Q

pl L p Q

c f c Q d d c f c Q f p

c f c f p c f c f c f c f
∈ ∈ ∈

∈ ∈

≤ + − = +

≤ + ⋅ = + − ≤

∑ ∑ ∑
∑ ∑

  By theorem 2 we know that when max min1d u≤ ≤
(In fact this condition can be generalized to 

max mind u≤ , by multiplying an approximate num-
ber, it can turn into max min1d u≤ ≤ ), algorithm 

A  can find a k -splittable flow that satisfies the 
parh restrictions. We obtain the performance ra-
tio 

of congestion and cost 
min

3 1( ,1)
2 1 (1/ 2)k⋅

−
.

If for each l L∈ , 2lk ≤ , the congestion value is 2, 

which is the same as in [10]. When mink increas-
es, that is the minimum number of paths each 

commodity can use increases, the congestion 
value 

min

3 1
2 1 (1/ 2)k⋅

−
will decrease, which is 

reasonable in the practice.

Conclusions

In this paper, we consider the single-source multi-
commodity k -splittable minimizing congestion 
problem. In this problem, the number of paths 
each commodity can use may not be equal. We 
generalize the rounding down strategy used in 
[10] to this problem and obtain the congestion and 
cost performance ratio

min

3 1( ,1)
2 1 (1/ 2)k⋅

−
. Authors in 

[11] also consider the single-source k -splittable 
flow problem while the number of paths each 
commodity can use is equal to k . They obtained 
the congestion and cost performance ratio (1+1/
k+1/(2k-1), 1). Although the congestion ratio is 
better than ours in some cases, the algorithm in 
[11] needs to adopt the algorithm in [12] which 
increases the difficulty of the algorithm.

For the k -splittable flow problem, most the 
current algorithms rely on the algorithms of the 
unsplittable flow and there are few results on the 
generalized multi-source case. In the future, we 
will go on to study the k -splittable flow problem. 
Analysis the characters of the k -splittable flow 
and design more effective algorithms.
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