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Comparative Study of a Class of One-Step Methods for the 
Numerical Solution of Some Initial Value Problems in Ordinary 
Differential Equations

We emphasized explicitly on the derivation and implementation 
of a new one-step numerical method for the solution of initial 
value problems in ordinary differential equations. In this paper, 
we aimed at comparing the newly developed method with oth-
er existing methods such as Euler’s method, Trapezoidal rule 
and Simpson’s rule. Using these methods to solve some initial 
value problems of first order ordinary differential equations, we 
discovered that the results compared favorably, which led to the 
conclusion that the newly derived one-step numerical method is 
approximately correct and can be used for any related first order 
ordinary differential equations. 
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1. INTRODUCTION 

Various numerical methods have been 

developed for the solution of some initial value 

problems of ordinary differential equations.  

Some of the Numerical Analysts who have 

worked extensively on the development of 

numerical methods are: Fatunla, (1976), 

Lambert (1991), Ibijola, (1997 and 1998), Kama 

and Ibijola (2000), Butcher (2003), Zarina et al. 

(2005), Aboiyar et al. (2015), Fadugba and 

Falodun (2017), just to mention a few. The 

efficiency of all these contributed efforts from 

these Numerical Analysts in numerical analysis 

had been measured and tested for their 

stability, accuracy, convergence and 

consistency properties. The accuracy 

properties of different methods are usually 

compared by considering the order of 

convergence as well as the truncation error 

coefficients of the various methods. Research 

has shown that for a method to be suitable for 

solving any sets of initial value problems in 

ordinary differential equations, it must have all 

the mentioned characteristics. In this paper, we 

compare a new one-step numerical method 

with existing methods with the above 

mentioned characteristics in mind to solve 

some initial value problems in ordinary 

differential equations of the form: 

 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑎) = 𝜂, −∞ < 𝑦 < ∞, 𝑎 ≤ 𝑥 ≤ 𝑏    

            (1) 

in the interval (𝑥𝑛,  𝑥𝑛+1) by interpolating 

function given by 

𝐹(𝑥) = 𝑎0 + 𝑎1𝑒−𝛼𝑥     

            (2) 

where 𝑎0 and 𝑎1 are real undetermined 

coefficients. 

The rest of the paper is organized as follows. 

Section Two consists of some basic properties. 

Section Three is the development of the new 

scheme. Section Four consists of the numerical 

example, discussion of results and concluding 

remarks.  

2. SOME BASIC PROPERTIES 

We consider the following basic properties 

namely; stability, consistency and convergence. 

(a) Stability: A numerical method is said to be 

stable if the difference between the 

numerical solution and the exact solution can 

be made as small as possible, that is if there 

exists two positive constant 0  and e K such 

that the following holds;  

0( )n ny y x K e       

            (3) 

(b) Consistency: A numerical method with an 

increment function ( , , )n nx y h is said to be 

consistent with the initial value problem 

under consideration if  

( , , ) ( , )n n n nx y h f x y       

           (4) 

(c) Convergence: A numerical method is said to 

be convergent if for all initial value problem 

satisfying the hypothesis of Lipschitz 

condition given by  

2 1 2 1( , ) ( , )f x y f x y L y y       

                      (5)  

where the Lipschitz constant is denoted by L.  

Remark 1: The necessary and sufficient 

conditions for convergence are stability and 

consistency.  

3. DEVELOPMENT OF A NEW ONE STEP 

NUMERICAL METHOD 

Suppose we have the initial value problem of 

the form: 

 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0    

            (6) 

Let us assume that the theoretical solution 𝑦(𝑥) 

to (6) can be locally represented in the 

interval (𝑥𝑛,  𝑥𝑛+1), 𝑛 ≥ 0 by the interpolating 

polynomial function: 

𝐹(𝑥) = 𝑎0 + 𝑎1𝑒−𝛼𝑥     

            (7) 

where 𝑎0, and 𝑎1 are real undetermined 

coefficients. 

We also assume that 𝑦𝑛 is a numerical estimate 

to the theoretical solution 𝑦(𝑥) and              
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 𝑓𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛). We define mesh points as 

follows: 

 𝑥𝑛 = 𝑎 + 𝑛ℎ,  𝑛 = 0,  1,  2, … or 𝑥𝑛+1 = 𝑎 + (𝑛 +

1)ℎ,  𝑛 = 1,  2, … 

Therefore, from (7), we obtain the following 

derivatives 

𝐹1(𝑥) = −𝛼𝑎1𝑒−𝛼𝑥     

            (8) 

 𝐹2(𝑥) = 𝛼2𝑎1𝑒−𝛼𝑥     

            (9) 

From (7), we have that 

 𝑎0 = 𝐹(𝑥) −  𝑎1𝑒−𝛼𝑥    

          (10) 

Also from (8), we obtain 

 𝑎1 = −
𝐹1(𝑥)

𝛼𝑒−𝛼𝑥
      

          (12) 

Putting (12) into (9), yields 

  𝐹2(𝑥) = −𝛼𝐹1(𝑥)     

          (13) 

Similarly, from (12) and (10), we have: 

 𝑎0 = 𝐹(𝑥) −
𝐹1(𝑥)

𝛼
     

            (14) 

Now, imposing the following constraints on the 

interpolating function (7) in the following order: 

a. The interpolating function (7) must coincide 

with the theoretical solution at 𝑥 = 𝑥𝑛 and 

𝑥 = 𝑥𝑛+1 such that: 

 𝐹(𝑥𝑛) = 𝑎0 +  𝑎1𝑒−𝛼𝑥𝑛 

 𝐹(𝑥𝑛+1) = 𝑎0 +  𝑎1𝑒−𝛼𝑥𝑛+1 

b. The derivative of 𝐹1(𝑥), 𝐹2(𝑥) and 𝐹𝑛(𝑥) 

coincide with 𝑓(𝑥), 𝑓1(𝑥) and 𝑓𝑛−1(𝑥) 

respectively. That is; 

 𝐹1(𝑥) = 𝑓𝑛 

𝐹2(𝑥) = 𝑓𝑛
1  

From conditions (a) and (b) above, it follows 

that: 

 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) ≡ 𝑦𝑛+1 − 𝑦𝑛 

Therefore, we have: 

 𝑎0 +  𝑎1𝑒−𝛼𝑥𝑛+1 − (𝑎0 +  𝑎1𝑒−𝛼𝑥𝑛) = 𝑦𝑛+1 − 𝑦𝑛 

Re-arranging terms yield: 

𝑦𝑛+1 = 𝑦𝑛 + 𝑎1(𝑒−𝛼𝑥𝑛+1 − 𝑒−𝛼𝑥𝑛)   

          (15) 

From the mesh points, we have 

 𝑥𝑛 = 𝑎 + 𝑛ℎ 

or 

 𝑥𝑛+1 = 𝑎 + (𝑛 + 1)ℎ 

 From (15), the term   (𝑒−𝛼𝑥𝑛+1 − 𝑒−𝛼𝑥𝑛) can be 

written as 

  𝑒−𝛼𝑥𝑛+1 − 𝑒−𝛼𝑥𝑛 =  𝑒−𝛼(𝑎+(𝑛+1)ℎ) − 𝑒−𝛼(𝑎+𝑛ℎ)  

by factorization and setting 𝑎 = 0, we have: 

 𝑒−𝛼(𝑎+(𝑛+1)ℎ) − 𝑒−𝛼(𝑎+𝑛ℎ) = 𝑒−𝛼𝑛ℎ (𝑒−𝛼ℎ − 1) 

                                (16) 

Putting (12) and (16) in (15), we have the new 

scheme follow: 

  𝑦𝑛+1 = 𝑦𝑛 −
𝑓𝑛

𝛼
(𝑒−𝛼ℎ − 1)    

          (17) 

Using power series expansion to fourth term 

and by factorization, (17) becomes: 

  𝑦𝑛+1 = 𝑦𝑛 − ℎ (−1 +
𝛼ℎ

2!
− 

𝛼2ℎ2

3!
) 𝑓𝑛  

                     (18) 

Equation (18) is the proposed one-step method. 

3.1 Properties of the Scheme 

3.1.1 Convergence of the Scheme 

We establish the numerical integration 

algorithm for which (18) can be expressed as 

one-step method in the form: 

 𝑦𝑛+1 =  𝑥𝑛 + ℎ∅(𝑥𝑛, 𝑦𝑛; ℎ)    

                                (19) 

where ∅(𝑥𝑛, 𝑦𝑛; ℎ) is the increment function. We 

proceed to derive the increment function for our 

scheme from: 

 𝐹(𝑥) =  𝑎0 +  𝑎1𝑒−∝𝑥 

If we assume that the point 𝑥 =  𝑥𝑛 and 𝑥 =

 𝑥𝑛+1  

Then: 

 𝐹(𝑥𝑛) =  𝑎0 +  𝑎1𝑒−∝𝑥𝑛    

          (20) 

and 
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 𝐹(𝑥𝑛+1) =  𝑎0 +  𝑎1𝑒−∝𝑥𝑛+1    

                                (21) 

If we also assume that  𝑓(𝑥𝑛) and 𝑓(𝑥𝑛+1) 

coincide with 𝑦𝑛 and 𝑦𝑛+1 respectively, then let 

𝑓𝑘 denote the 𝑘𝑡ℎ total derivatives of 𝑓(𝑥, 𝑦) 

with respect to 𝑥𝑛, we have: 

 𝐹1(𝑥𝑛) =  −∝ 𝑎1𝑒−∝𝑥𝑛 =  𝑓𝑛   

          (22) 

 𝐹2(𝑥𝑛) =  −∝2 𝑎1𝑒−∝𝑥𝑛 =  𝑓𝑛
1   

          (23) 

Solving for 𝑎1 in (22); 

 𝑎1 =  −
𝑓𝑛

∝𝑒−∝𝑥𝑛
 

Similarly, 

 𝑎0 = 𝐹(𝑥𝑛)  −
𝑓𝑛

∝
     

          (24) 

Considering the assumption that 𝐹(𝑥𝑛) =  𝑦𝑛 

and 𝐹(𝑥𝑛+1) =  𝑦𝑛+1, we have our numerical 

integrator generated as: 

 𝑦𝑛+1 −  𝑦𝑛 =  𝑎1(𝑒−∝𝑥𝑛+1 − 𝑒−∝𝑥𝑛)  

                     (25) 

 𝑦𝑛+1  =  𝑦𝑛 −
𝑓𝑛

∝𝑒−∝𝑥𝑛
(𝑒−∝𝑥𝑛+1 −  𝑒−∝𝑥𝑛) 

 𝑦𝑛+1  =  𝑦𝑛 −
𝑓𝑛

∝
(𝑒−∝ℎ −  1)    

          (26) 

By expansion and substitution, (26) becomes: 

 𝑦𝑛+1  =  𝑦𝑛 + ℎ[𝑓𝑛 − 𝐴𝑓𝑛]    

          (27) 

where 

 𝐴 =  
3∝ℎ+∝2ℎ2 

6
 

 Equation (27) converges since we can write it 

in the form: 

 𝑦𝑛+1 =  𝑦𝑛 + ℎ∅(𝑥𝑛, 𝑦𝑛; ℎ) 

where 

 ∅(𝑥𝑛, 𝑦𝑛; ℎ) =  𝑓𝑛 − 𝐴𝑓𝑛    

          (28) 

Equation (28) is therefore called the increment 

function. 

Definition 1 

We define any algorithm for solving a 

differential equation in which the approximate 

𝑦𝑛+1 to the solution at  𝑥𝑛+1 can be calculated, 

if only 𝑥𝑛, 𝑦𝑛 and h are known is called one  

step method. It is a common practice to write 

the functional dependence part , 𝑦𝑛+1 on the 

quantities 𝑥𝑛, 𝑦𝑛 and ℎ as: 

 𝑦𝑛+1  = 𝑦𝑛 +  ℎ∅(𝑥𝑛 , 𝑦𝑛 ; ℎ). 

We observe that: 

 ∅(𝑥𝑛, 𝑦𝑛; ℎ) =  𝑓𝑛 − 𝐴𝑓𝑛   

      (29) 

Theorem 1 

Let the increment function of the scheme 

defined by (29) be continuous as a function of 

its three arguments in the region defined by 𝑥 ∈

[𝑎, 𝑏], 𝑦 ∈ [𝑎, 𝑥], 0 ≤ ℎ ≤ ℎ0, where ℎ0 > 0, and 

let there exist a constant L such that 

|∅(𝑥𝑛, 𝑦𝑛
∗; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ)|  ≤ 𝐿|𝑦𝑛

∗ − 𝑦𝑛| for all 

(𝑥𝑛, 𝑦𝑛; ℎ) and (𝑥𝑛, 𝑦𝑛
∗; ℎ) in the region just 

defined. Then the relation ∅(𝑥, 𝑦; 0) =  𝑓(𝑥, 𝑦) is 

a necessary and sufficient condition for the 

convergence of the method defined by the 

equation (3.24) 

Proof: 

The increment function ∅(𝑥𝑛, 𝑦𝑛
∗; ℎ) can be 

written in the form: 

  ∅(𝑥𝑛, 𝑦𝑛
∗; ℎ) = 𝑓(𝑥𝑛, 𝑦𝑛) − 𝐴𝑓(𝑥𝑛, 𝑦𝑛)  

                  (30) 

Where A is a constant defined as: 

 𝐴 =  
3∝ℎ+∝2ℎ2 

6
, and  𝑥𝑛 = 𝑎ℎ at 𝑎 ≥ 0             

Consider equation (30), we can also write 

∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) =  𝑓(𝑥𝑛, 𝑦∗
𝑛

) +  𝐴𝑓(𝑥𝑛, 𝑦∗
𝑛

)  

 ∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ) =

𝑓(𝑥𝑛, 𝑦∗
𝑛

) −  𝑓(𝑥𝑛, 𝑦𝑛) +  𝐴[𝑓(𝑥𝑛, 𝑦∗
𝑛

) −

 𝑓(𝑥𝑛, 𝑦𝑛)]       (31) 

Let  𝑦̅ be defined as a point in the interior of the 

interval whose end points are 𝑦 and 𝑦∗
 
, 

applying  mean value theorem, we have: 
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 𝑓  (𝑥𝑛, 𝑦∗
𝑛

) − 𝑓  (𝑥𝑛, 𝑦𝑛) =  
𝜕𝑓 (𝑥𝑛,𝑦̅ )

𝜕𝑦𝑛
(𝑦∗

𝑛
−

 𝑦𝑛)      

      (32) 

 We define 

𝐿 =  Sup
(𝑥𝑛,𝑦𝑛)∈𝐷𝑜𝑚

𝜕𝑓(𝑥𝑛,𝑦̅𝑛)

𝜕𝑦𝑛
  

                  (33) 

therefore 

  ∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ) =
𝜕𝑓(𝑥𝑛,𝑦̅ )

𝜕𝑦𝑛
(𝑦∗

𝑛
−

 𝑦𝑛) − 𝐴 [
𝜕𝑓(𝑥𝑛,𝑦̅)

𝜕𝑦𝑛
(𝑦∗

𝑛
− 𝑦𝑛)]        

(34) 

  ∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ) = 𝐿(𝑦∗
𝑛

−  𝑦𝑛) +

 𝐴𝐿1(𝑦∗
𝑛

− 𝑦𝑛)   

        

(35) 

Taking the absolute value of both sides, 

we have: 

 |∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ)|  ≤

 |𝐿 +  𝐴𝐿1||(𝑦∗
𝑛

−  𝑦𝑛)|              

       

(36) 

Let M =  |𝐿 +  𝐴𝐿1|, then (36) becomes: 

  |∅(𝑥𝑛, 𝑦∗
𝑛

; ℎ) −  ∅(𝑥𝑛, 𝑦𝑛; ℎ)|  ≤

 𝑀|𝑦∗
𝑛

−  𝑦𝑛|   

      (37) 

Equation (37) is the necessary condition 

for convergence of the method. 

3.2 CONSISTENCY OF THE SCHEME 

Definition 2  

A numerical scheme with an increment function 

∅(𝑥𝑛, 𝑦𝑛; ℎ) =  𝑓𝑛 − 𝐴𝑓𝑛 is said to be consistent 

with the initial value problem: 

 𝑦1 = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) =  𝑦0  

      (38) 

 Since 𝑦𝑛+1 =  𝑦𝑛 + ℎ∅(𝑥𝑛, 𝑦𝑛; ℎ) and 

∅(𝑥𝑛, 𝑦𝑛; ℎ) =  𝑓𝑛 − 𝐴𝑓𝑛 , if ℎ = 0, then 𝑦𝑛+1 =  𝑦𝑛 

thus 

 ∅(𝑥𝑛, 𝑦𝑛; 0) = 𝑓(𝑥, 𝑦)  

      (39) 

Therefore, we say the scheme is consistent. 

3.3 STABILITY ANALYSIS OF THE SCHEME 

Theorem 3 

Let 𝑦𝑛 = 𝑦(𝑥𝑛) and 𝑝𝑛 = 𝑝(𝑥𝑛) denote two 

different numerical solutions of initial value 

problem of ordinary differential equation (6) with 

the conditions specified as 𝑦(𝑥0) =  𝜂 and 

𝑝(𝑥0) =  𝜂∗ respectively, such that |𝜂 − 𝜂∗| <

𝜀, 𝜀 > 0. If the two numerical estimates are 

generated by the integration scheme (18), we 

have: 

 𝑦𝑛+1 =  𝑦𝑛 + ℎ∅(𝑥𝑛, 𝑦𝑛; ℎ)  

      (40) 

 𝑝𝑛+1 =  𝑝𝑛 + ℎ∅(𝑥𝑛, 𝑝𝑛; ℎ)  

                  (41) 

The condition that: 

 |𝑦𝑛+1 −  𝑝𝑛+1|  ≤ 𝑘|𝜂 − 𝜂∗|  

                  (42) 

is the necessary and sufficient condition that 

our new method (18) be stable and convergent. 

Proof:  

From (18), we have: 

 𝑦𝑛+1 =  𝑦𝑛 + ℎ[𝑓𝑛 − 𝐴𝑓𝑛] 

Then let: 

 𝑦𝑛+1 =  𝑦𝑛 + ℎ[𝑓(𝑥𝑛, 𝑦𝑛) − 𝐴𝑓(𝑥𝑛, 𝑦𝑛)] 

 𝑝𝑛+1 =  𝑝𝑛 + ℎ[𝑓(𝑥𝑛, 𝑝𝑛) − 𝐴𝑓(𝑥𝑛, 𝑝𝑛)] 

Therefore; 

 𝑦𝑛+1 −  𝑝𝑛+1 = 𝑦𝑛 − 𝑝𝑛 + ℎ{𝑓(𝑥𝑛, 𝑦𝑛) −

𝑓(𝑥𝑛, 𝑝𝑛) − 𝐴[𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛, 𝑝𝑛)]} 

Applying mean value theorem, we have: 

 𝑦𝑛+1 −  𝑝𝑛+1 = 𝑦𝑛 − 𝑝𝑛 + ℎ {
𝜕𝑓(𝑥𝑛,𝑝𝑛 )

𝜕𝑝𝑛
(𝑥𝑛 −

 𝑝𝑛) − 𝐴 [
𝜕𝑓(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
(𝑥𝑛 − 𝑝𝑛)]} 

Define 

 𝐿 =  Sup
(𝑥𝑛,𝑝𝑛)∈𝐷𝑜𝑚

𝜕𝑓(𝑥𝑛,𝑝𝑛)

𝜕𝑝𝑛
 

Then we have, 

 𝑦𝑛+1 −  𝑝𝑛+1 = 𝑦𝑛 − 𝑝𝑛 + ℎ{𝐿(𝑥𝑛 −  𝑝𝑛) −

𝐴𝐿1(𝑥𝑛 −  𝑝𝑛)} 

Taking absolute value of both sides, we have: 
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 |𝑦𝑛+1 −  𝑝𝑛+1|  ≤ |𝑦𝑛 −  𝑝𝑛| + ℎ|𝐿 − 𝐴𝐿1||𝑥𝑛 −

 𝑝𝑛| 

Let 𝑁 = ℎ|𝐿 − 𝐴𝐿1| and 𝑦(𝑥0) = 𝜂, 𝑝(𝑥0) =

𝜂∗, 𝜀 > 0, then 

 |𝑦𝑛+1 −  𝑝𝑛+1|  ≤ 𝑁|𝑥𝑛 −  𝑝𝑛| and |𝑦𝑛+1 −

 𝑝𝑛+1|  ≤ 𝑁|𝜂 − 𝜂∗| < 𝜀, 𝜀 > 0 

We conclude that our scheme is stable and 

hence convergent. 

4 ILLUSTRATIVE EXAMPLES, DISCUSSION 

OF RESULTS AND CONCLUDING    

REMARKS 

Here we present some illustrative examples, 

discussion of results and concluding remarks 

as follows: 

4.1  ILLUSTRATIVE EXAMPLES 

It is always necessary to demonstrate the 

applicability, suitability and accuracy of the 

newly developed one-step numerical method. 

To do this, the method was rewritten in an 

algorithm form, translated into computer codes 

using QBASIC programming language and 

implemented with sample problems on a digital 

computer. We consider the following illustrative 

examples. 

Example 1 

 𝑦′ = 𝑥 + 𝑦 , 𝑦(0) = 1 with ℎ = 0.1 

The exact solution is obtained as  𝑦(𝑥) = 2𝑒𝑥 −

 𝑥 − 1 

The results and the errors incurred are shown 

in Tables 1 and 2 respectively.  

 

Table 1: Results for Problem 1 at 𝒉 =  𝟎. 𝟏 

Exact 

Solution 

Euler’s 

Method 

Trapezoidal 

Rule 

One Step 

Numerical 

Method 

Simpson’s 

Rule 

1.11034179 1.10000001 1.11000000 1.10516667 1.11000001 

1.24280548 1.22000002 1.24205001 1.23191011 1.24266666 

1.39971769 1.36200001 1.39846525 1.38249934 1.39914666 

1.58364940 1.52820000 1.58180410 1.55944216 1.58255706 

1.79744256 1.72102001 1.79489353 1.76551020 1.79572555 

2.04423761 1.94312200 2.04085735 2.00376630 2.04177674 

2.32750535 2.19743420 2.32314737 2.27759576 2.32416330 

2.65108180 2.48177620 2.64557784 2.59073949 2.64670044 

3.01920629 2.81589538 3.01236352 2.94733214 3.01360399 

3.43656373 3.18748492 3.42816169 3.35194325 3.42953241 

 

S.E. Fadugba and T. E.Olaosebikan, RJMCS, 2018; 2:9



http://escipub.com/research-journal-of-mathematics-and-computer-science/                  7

 

 

Figure 1: Graphical interpretation of Table 1 

 

Table 2: Errors obtained for problem 1 at 𝒉 =  𝟎. 𝟏 

Euler’s  

Method 

Trapezoidal  

Rule 

One Step 

Numerical  

Method 

Simpson’s  

Rule 

1.034184e-002 3.418362e-004 5.175110e-003 3.418362e-004 

1.280552e-002 7.555163e-004 1.089537e-002 1.388497e-004 

3.771762e-002 1.252365e-003 1.721835e-002 5.709485e-004 

5.544940e-002 1.845294e-003 2.420723e-002 1.092329e-003 

7.642254e-002 2.549010e-003 3.193235e-002 1.716983e-003 

1.011156e-001 3.380248e-003 4.047132e-002 2.460858e-003 

1.300712e-001 4.358040e-003 4.990959e-002 3.342115e-003 

1.639042e-001 5.504008e-003 6.034231e-002 4.381410e-003 

2.033108e-001 6.842699e-003 7.187414e-002 5.602229e-003 

2.490787e-001 8.401964e-003 8.462048e-002 7.031244e-003 
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Figure 2: Graphical interpretation of Table 2 

Example 2 

 𝑦′ = −𝑦 , 𝑦(0) = 1 with ℎ = 0.1 

The exact solution is obtained as  𝑦(𝑥) = 𝑒−𝑥 

The results and the errors incurred are shown 

in Tables 3 and 4 respectively.  

 

Table 3: Results for problem 2 at 𝒉 =  𝟎. 𝟏 

Exact  

Solution 

Euler’s 

Method 

Trapezoidal 

Rule 

One Step 

Numerical 

Method 

Simpson’s  

Rule 

0.90483743 0.90000000 0.90500000 0.89483333 0.90500000 

0.81873077 0.81000001 0.81902500 0.80072665 0.81866666 

0.74081820 0.72900001 0.74121762 0.71651691 0.74089333 

0.67032003 0.65610000 0.67080195 0.64116323 0.67050846 

0.60653067 0.59049000 0.60707576 0.57373422 0.60681016 

0.54881161 0.53144100 0.54940356 0.51339650 0.54916319 

0.49658531 0.47829690 0.49721022 0.45940429 0.49699269 

0.44932896 0.43046721 0.44997525 0.41109028 0.44932896 

0.40656966 0.38742048 0.40722760 0.36785728 0.40704944 

0.36787945 0.34678440 0.36854098 0.32917094 0.36837974 
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Figure 3: Graphical interpretation of Table 3 

 

Table 4: Errors obtained for problem 2 at 𝒉 =  𝟎. 𝟏 

Euler’s  

Method 

Trapezoidal  

Rule 

One Step 

Numerical  

Method 

Simpson’s  

Rule 

4.837418e-003 1.625820e-004 1.000410e-002 1.625820e-004 

8.730753e-003 2.942469e-004 1.800412e-002 6.408641e-005 

1.181822e-002 3.994043e-004 2430129e-002 7.511265e-005 

1.422005e-002 4.819046e-004 2.915680e-002 1.884206e-004 

1.604066e-002 5.451056e-004 3.279644e-002 2.795026e-004 

1.737064e-002 5.919315e-004 3.541511e-002 3.515608e-004 

1.828840e-004 6.249249e-004 3.718102e-002 4.073894e-004 

1.886175e-002 6.462928e-004 3.823867e-002 4.494232e-004 

1.914917e-002 6.579478e-004 3871238e-002 4.797808e-004 

1.920100e-002 6.615437e-004 3.870851e-002 5.00325e-004 
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Figure 4: Graphical interpretation of Table 4 

 

4.2 DISCUSSION OF RESULTS AND 

CONCLUDING REMARKS  

In this paper, Euler’s method, Trapezoidal rule, 

Simpson’s rule and one-step numerical method 

was used to solve two sampled problems of 

first order ordinary differential equations in 

order to compare the results and determine if 

one-step numerical method is employable to 

solve such problems. Since the results and 

errors obtained via the newly developed 

method shown in Tables 1, 2 and Tables 3, 4 

respectively, compared favorably with other 

existing methods, this shows that the new one 

step method performs better and is an 

alternative approach for solving initial value 

problems in ordinary differential equations. We 

recommend a further extension to this research 

in the area of applications. The scheme can still 

be implemented on other initial and boundary 

value problems of ordinary differential 

equations. Moreover, some of the problems 

arising from biological sciences, engineering 

and economics can be translated 

mathematically into an ordinary differential 

equation and we believe that the scheme could 

be of help to provide approximate solutions. 
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