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1 . Introduction 

The theory of strongly continuous  study  with 

the fundamental result  of Hille and Yosida 

dating back to 1948. Several monographs and 

textbooks cover the by  canonical material , 

each of them having its own peculiar point of 

view . One may focus entirely on the 

semigroup, and consider the generator as a 

derived concept (as in [3]) or one may start with 

the generator and view the semigroup as the 

pre-Laplace transform of the resolvent (as in 

[1]). 

On the other side, during the last two decades 

the theory of functional calculus has proved to 

be an indispensable tool to deal with abstract 

evolution equations, above all in the discussion 

of maximal regularity. Despite their success, 

these methods have been mainly restricted to 

sectorial operators  and hence to holomorphic 

semigroups. Eventually, 𝐶0 -groups were 

covered by a functional calculus for strip type 

operators [4]; but this was done because of  the 

prominent role the groups of imaginary powers 

of a sectorial operator play in the parabolic 

world by Markus Haase [9]. Anyway, an 

approach to general semigroups via 

holomorphic functional calculus is missing up to 

now, as well as one for cosine operator 

functions (In fact that it was not clear for some 

time whether cosine functions could be treated 

by functional calculus method at all) .  

Want to close this gap. We complement the 

existing holomorphic functional calculi (for 

sectorial and strip-type operators) by two more, 

one on half planes and one on parabolas. (The 

first covers general semigroups, the second 

cosine functions.) The strength of this approach 

lies in the fact that  do  not have to require the 

operator to generate a semigroup or a cosine 

function, but  can work just with a certain 

natural growth condition on the norm of  the 

resolvent. As a conseqence  can give a short 

and straightfoward proof of the Hille–Yosida 

theorem, based only on one of the 

cornerstones of general functional calculus 

theory, the so-called Convergence Lemma A 

similar remark applies to the Trotter–Kato 

theorem. 

So it turns out that the theory functional 

calculus indeed provides a valid starting point 

for general semigroup theory, not only in the 

holomorphic case. 

2. A functional Calculus on the Half-plane 

Let 𝐴𝑗 be the sequence of generators of  𝐶0-

semigroup (𝑇𝑗(1 + 𝜀))(1+𝜀)∈ℝ  on a Banach 

space X.  Would like to interpret 

𝑇𝑗(1 + 𝜀) = (𝑒(1+𝜀)𝑧)(𝐴𝑗),    (ε >  −1), 

were 𝑒(1+𝜀)𝑧 denotes the complex function  z → 

𝑒(1+𝜀)𝑧, and this should only be a special case 

of a general set-up in which “𝑓𝑗(𝐴𝑗)” are defined 

in a reasonable way for as much functions 𝑓𝑗 as 

possible. The approach is based on the Cauchy 

integral formula; as we shall see, this to be 

viable requires only knowledge of  the resolvent 

outside  the sequence of spectrums of 𝐴𝑗. (In 

particular, the generator property is not 

necessary to construct the functional calculus in 

the first place.) As the procedure should work 

for all semigroup generators,  lead to a 

functional calculus on (left) half-planes. 

Let us fix some notation. For (1 + 𝜀) ∈ [−∞, ∞] 

define 

𝐿(1+𝜀) := {z ∈ ℂ | Re z < (1 + 𝜀)}, 

𝑅(1+𝜀) := {z ∈ ℂ | Re z > (1 + 𝜀)} 

the open left and right half-planes defined by 

the abscissa Re z = (1 + 𝜀), where in the 

extremal cases one half-plane is understood to 

be empty, and the other  is the whole complex 

plane. 

Say that the sequence of  operators  𝐴𝑗 on a 

Banach space X is of half-plane type 

 (1 + 𝜀) ∈ ℝ ∪ {−∞}, if 𝑅(1+𝜀)⊂ e(𝐴𝑗) and 

𝑀(𝛽+𝜀) := 𝑀(𝛽+𝜀) (𝐴𝑗) := sup{ R(z, 𝐴𝑗) | Re z 

≥ 𝛽 + 𝜀 } < ∞ 

for every 𝛽 + 𝜀 > (1 + 𝜀). We call  

(1 + 𝜀)0(𝐴𝑗) := min{(1 + 𝜀) | 𝐴𝑗 is of half-plane 

type (1 + 𝜀)} ∈ [−∞, ∞] 
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the abscissa of uniform boundedness (in short: 

the aub) of  the sequence of operators 𝐴𝑗  . 

Since all notions are invariant under 

translations parallel to the real axis,  assume in 

the following that (1 + 𝜀)0 (𝐴𝑗) ≤ 0. Fix 0 < 𝜀 <

∞ and define 

ℇ(𝐿(1+𝜀)) := {𝑓𝑗 : 𝐿(1+𝜀) → ℂ | 𝑓𝑗 is holomorphic 

and 

∃ M, ε > −1 :|𝑓𝑗  (z) | ≤ M |𝑧|−(2+𝜀) as z→ ∞ } 

By standard applications of Cauchy’s integral 

theorem for 𝑓𝑗 ∈ ℇ (𝐿(1+𝜀)) the formula 

∑ 𝑓𝑗(𝑎)

𝑗

=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)

𝑗

𝑑𝑧

𝑧 − 𝑎
               (𝑅𝑒 𝑎

𝑅𝑒 𝑧=(1+𝜀)

≤ 0) 

holds. Here (1 + 𝜀) ∈ (0, (1 + 𝜀)) is arbitrary, 

and the direction of integration is bottom up,i.e., 

from ((1 + 𝜀) − i∞) to ((1 + 𝜀) + i∞). Since the 

resolvent R(·, 𝐴𝑗) is bounded on the vertical 

lines 

 (Re z = (1 + 𝜀)), 𝜀 > -1, the integral 

∑ Φ(𝑓𝑗)

𝑗

= ∑ 𝑓𝑗(𝐴𝑗)

𝑗

=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)

𝑗

𝑅(𝑧, 𝐴𝑗)
𝑅𝑒 𝑧=(1+𝜀)

 

converges absolutely. 

Proposition 2.1. The so defined mapping Φ : 

ℇ(𝐿(1+𝜀)) → 𝓛(X) satisfies the following 

properties: 

a) Φ is a homomorphism of algebras. 

b) If 𝑇𝑗∈ 𝓛(X) commutes with 𝐴𝑗  , i.e., 𝑇𝑗𝐴𝑗   

⊂ 𝐴𝑗  𝑇𝑗 , it commutes with every Φ(𝑓𝑗), 𝑓𝑗 ∈ ℇ. 

c) Φ(𝑓𝑗 (z)( (1 + 𝜀)  − z)−1 ) = Φ(𝑓𝑗 )R((1 + 𝜀), 

𝐴𝑗) for all Re(1 + 𝜀)  > (1 + 𝜀) . 

d) Φ(((1 + 𝜀)  − z)−1 (µ𝑗 − z)−1 ) = R((1 + 𝜀), 

𝐴𝑗)R(µ𝑗, 𝐴𝑗) for all Re (1 + 𝜀), Re µ𝑗 > (1 + 𝜀). 

Proof. a) This follows from a combination of  

Fubini’s theorem, the resolvent identity and 

Cauchy’s theorem. The computation is the 

same as in the classical Dunford–Riesz setting, 

see [2, VII.4.7]. 

b) is obvious. 

c) follows from the resolvent identity, since by 

Cauchy’s theorem the integral 

 ∫ 𝑓𝑗  (z) / ((1 + 𝜀)   −  z) dz 
𝑅𝑒𝑧−(1+𝜀)

 is equal to 

zero. 

d) Here a standard path deformation argument 

is used. In the integral 

 ∫ ((1 + 𝜀)
𝑅𝑒𝑧−(1+𝜀)

  − z)-1(µ𝑗 − z)−1 R(z, 𝐴𝑗) dz 

shift the path to the right, i.e., let (1 + 𝜀) grow. 

When passing the bscissas (1 + 𝜀) = Re (1 +

𝜀) and (1 + 𝜀) = Re 𝜇𝑗 the residue theorem 

yields some additive contributions which sum 

up to R((1 + 𝜀), 𝐴𝑗)R(µ𝑗, 𝐴𝑗) by the resolvent  

identity; if 

 (1 + 𝜀) > Re(1 + 𝜀), Re µ𝑗, the integral does 

not change any more as (1 + 𝜀) ↗∞ and hence 

it is equalto zero.        ∎ 

Denote by ℳ(𝐿(1+𝜀)) the field of meromorphic 

functions on the left half-plane   

 Re z < (1+𝜀). Then the triple (ℇ(𝐿(1+𝜀)), 

ℳ(𝐿(1+𝜀)), Φ) is a meromorphic functional 

calculusin the sense of [7, Section 1.3]. A 

meromorphic functions 𝑓𝑗 is called regularisable 

ifthere is a function e ∈ ℇ such that e𝑓𝑗 ∈ ℇ and 

e(𝐴𝑗) is injective. In this case one defines 

𝑓𝑗(𝐴𝑗) := e(𝐴𝑗)−1 (e𝑓𝑗)( 𝐴𝑗), 

which is a closed sequence operators . This 

definition does not depend on the chosen 

regulariser 

e ∈ ℇ (c𝑓𝑗. [7 , Section .1.2.1]). 

The basic rules governing this functional 

calculus are the same as for any meromorphic 

functional calculus, see [7]. The two most 

important of these are the laws for sums: 

𝑓𝑗(𝐴𝑗) + g𝑗(𝐴𝑗) ⊂ (𝑓𝑗 +g𝑗)( 𝐴𝑗) 

and products 

𝑓𝑗 (𝐴𝑗)g𝑗(𝐴𝑗) ⊂ (𝑓𝑗g𝑗)( 𝐴𝑗),𝒟((𝑓𝑗g𝑗)( 𝐴𝑗)) ∩ 

𝒟(g𝑗(𝐴𝑗)) = 𝒟(𝑓𝑗 (𝐴𝑗) g𝑗(𝐴𝑗)). 
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In particular, one has 𝑓𝑗(𝐴𝑗) + g𝑗(𝐴𝑗) = (𝑓𝑗 + 

g)( 𝐴𝑗) and 𝑓𝑗(𝐴𝑗) g𝑗(𝐴𝑗) = (𝑓𝑗g𝑗)( 𝐴𝑗) whenever 

 (𝐴𝑗) ∈ 𝓛(X). 

Note that every bounded analytic functions 𝑓𝑗 ∈ 

𝐻∞(𝐿(1+𝜀)) is regular is able, namely by the 

function e(z) := (1 − z)−2 . This is because 

𝑓𝑗(z)(1 − z)−2  decreases quadratially as z → ∞ 

and 

 e(𝐴𝑗) = R(1, 𝐴𝑗)2 is clearly injective. In 

particular, for each ε > −1 the sequence of 

operators 

𝑒(1+𝜀)𝐴𝑗 := (𝑒(1+𝜀)𝑧)(𝐴𝑗) 

is defined as a closed sequence of operators 

and 𝒟(𝐴𝑗
2 ) ⊂ 𝒟(𝑒(1+𝜀)(1+𝜀)),  𝜀 >  −1. 

Lemma 2.2. Let 𝐴𝑗 be the sequence of  

operators of half-plane type, with (1 + 𝜀)0(𝐴𝑗) ≤ 

0. Then for each x ∈ 𝒟(𝐴𝑗
2) the function 

((1 + 𝜀) → 𝑒−(1+𝜀)(1+𝜀) 𝑒(1+𝜀)𝐴𝑗 x) : [0, ∞) → X 

is continuous and bounded, and its Laplace 

transform is 

∫ 𝑒−(1+𝜀) (1+𝜀)  ∑ 𝑒(1+𝜀)𝐴𝑗

𝑗

 x d(1 + 𝜀)

∞

0

= R((1 + 𝜀)  , 𝐴𝑗)x         (Re (1 + 𝜀)  

> (1 + 𝜀))  

Proof. Write 𝑒(1+𝜀)𝐴𝑗 x = (𝑒𝑧(1+𝜀)/(1 − z)2 

)( 𝐴𝑗)[(1 − 𝐴𝑗)2  x]. Then the continuity in (1 +

𝜀) is clear from Lebesgue’s theorem. The rest 

follows by Fubini’s theorem. 

Lemma 2.3.  Let 𝐴𝑗 be a densely defined 

sequence of operators of half-plane type. Then 

𝒟(𝐴𝑗
2) are dense. 

Proof. For x ∈ 𝒟(𝐴𝑗) and n ∈ N we write nR(n, 

𝐴𝑗)x = x + R(n, 𝐴𝑗) (𝐴𝑗)x. The right hand side is 

bounded in n, hence R(n, 𝐴𝑗)x → 0 as n → ∞. 

But 𝒟(𝐴𝑗) is dense and the sequence of 

operators 

 (R(n, 𝐴𝑗))n≥1 are uniformly bounded. Hence 

R(n, 𝐴𝑗)x → 0 for all x ∈ X. But this implies that 

 nR(n, 𝐴𝑗)x = x + R(n, 𝐴𝑗)Ax → x whenever x ∈ 

𝒟(𝐴𝑗);so 𝒟(𝐴𝑗) ⊂ 𝒟(𝐴j
2)̅̅ ̅̅ ̅̅ ̅̅  which implies that 

𝒟(𝐴𝑗
2) is dense in X.       ∎ 

Proposition 2.4.  Let 𝐴𝑗 be sequence of 

operators of half-plane type, with (1 + 𝜀)0(𝐴𝑗) ≤ 

0. Then 𝐴𝑗  is the sequence of generators of a 

C0 -semigroup 𝑇𝑗 if and only if 𝐴𝑗 is densely 

defined and 𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗   is a bounded 

sequence of operators for all (1 + 𝜀)1 + ⋯ +

(1 + 𝜀)𝑛 ∈ [0, 1] satisfying sup (1 + 𝜀)1 + ⋯ +

(1 + 𝜀)𝑛 ∈ [0,1] 𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗    < ∞. In this 

case,  

𝑇𝑗 ((1 + 𝜀)1 + ⋯ + (1 + 𝜀)𝑛) = 

𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗  = ∏ 𝑒(1+𝜀)𝑖𝐴𝑗𝑛
𝑖=1

  for all 1 ≤

𝑖 ≤ 𝑛  

Proof. Let 𝐴𝑗 sequence of generates  C0-

semigroup  

(𝑇𝑗 ((1 + 𝜀)1 + ⋯ + (1 + 𝜀)𝑛 ))(1+𝜀)1+⋯+(1+𝜀)𝑛 ≥0 . 

Then 𝐴𝑗 is densely defined. Hence 𝒟(𝐴𝑗
2) is 

dense, by Lemma 2.3 Lemma 2.2 yields that 

R(·, 𝐴𝑗)x is the Laplace transform of 𝑒𝐴𝑗 x for x 

∈ 𝒟(𝐴𝑗
2 ). By the uniqueness of Laplace 

transforms, 𝑇𝑗 ((1 + 𝜀)1 + ⋯ + (1 + 𝜀)𝑛)x = 

𝑒(1+𝜀)𝐴𝑗 x, (1 + 𝜀)1 + ⋯ + (1 + 𝜀))𝑛 ≥ 0. Since 

𝒟(𝐴𝑗
2 ) is dense and 𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗     are  

closed sequence of operators, 

𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗     = 𝑇𝑗 ((1 + 𝜀)1 + ⋯ +

(1 + 𝜀)𝑛) are abounded sequence of operators. 

Conversely, suppose that 𝐴𝑗 is densely 

defined and 𝑇𝑗(1 + 𝜀)1 + ⋯ + (1 + 𝜀)𝑛  := 

𝑒((1+𝜀)1+⋯+(1+𝜀)𝑛)𝐴𝑗     are  bounded sequence of 

operators for all (1 + 𝜀)1 + ⋯ + (1 + 𝜀)𝑛 ≥ 0. 

Then 𝑇𝑗 are  semigroup (by general functional 

calculus) and 𝒟(𝐴𝑗
2) is dense, by Lemma 2.2. 

From the uniform boundedness 

𝑠𝑢𝑝(1+𝜀)1+⋯+(1+𝜀)𝑛∈[0,1])  𝑇𝑗 ((1 + 𝜀)1 + ⋯ +

(1 + 𝜀)𝑛)  < ∞ one concludes easily that  (𝑇𝑗 

((1 + 𝜀) + ⋯ + (1 + 𝜀)𝑛))  is uniformly bounded 

on compact intervals.Lemma 2.2 and the 

density of 𝒟(𝐴𝑗
2) imply that (𝑇𝑗 ((1 + 𝜀)1 + ⋯ +

(1 + 𝜀)𝑛)) is strongly continuous. Its Laplace 

transform coincides with the resolvent   of  𝐴𝑗 
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on 𝒟(𝐴𝑗
2) (Lemma 2.2, hence on X by density. 

So 𝐴𝑗   are the sequence of  generators of  𝑇𝑗 .    

∎ 

3. The Hille-Yosida Theorem 

The Hille–Yosida theorem is one of the most 

fundamental results in the “elemen-tary” theory 

of 𝐶0 -semigroups. Show that it is a 

straightforward consequence of the following 

general fact of functional calculus theory (see , 

e.g.,[9]) . 

Proposition 3.1. (Convergence Lemma) Let 

𝐴𝑗 be a densely defined half-plane type of 

sequence of operators on the Banach space X, 

with (1 + 𝜀)0 (𝐴𝑗) ≤ 0. Let 0 < 𝜀 < ∞  and let 

((𝑓𝑗)𝑖 )𝑖  be  net in 𝐻∞(𝐿(1+𝜀)) satisfying the 

following conditions: 

(i) 𝑠𝑢𝑝𝑖 ∑ ‖(𝑓𝑗)𝑖‖∞𝑗 < ∞; 

(ii) (𝑓𝑗)𝑖 (𝐴𝑗) ∈ 𝓛(X) for all i , and 

𝑠𝑢𝑝𝑖 ∑ ‖(𝑓𝑗)𝑖 (𝐴𝑗)  ‖𝑗  < ∞; 

(iii) 𝑓𝑗(z) := 𝑙𝑖𝑚𝑖 (𝑓𝑗)𝑖(z) exists for every z 

∈ 𝐿(1+𝜀) . 

Then 𝑓𝑗 ∈ 𝐻∞(𝐿(1+𝜀))  , 𝑓𝑗(𝐴𝑗) ∈ 𝓛 (X), (𝑓𝑗)𝑖 (𝐴𝑗) 

→ 𝑓𝑗(𝐴𝑗) strongly, and 

∑ ‖𝑓𝑗(𝐴𝑗)‖ 𝑗 ≤ lim 𝑠𝑢𝑝𝑖‖ ∑ (𝑓𝑗)𝑖(𝐴𝑗)𝑗 ‖ 

Proof. The proof is analogous to the proof of [7, 

Proposition 5.1.4]. By Vitali’s theorem , 𝑓𝑗  are 

holomorphic and the convergence of the  (𝑓𝑗)𝑖  

to 𝑓𝑗 is uniform on compacts. Moreover, 

condition (i) clearly implies that 𝑓𝑗  is bounded. 

By Lebesgue’s theorem and the definition of the 

elementary functional calculus ((𝑓𝑗)𝑖 (z) 

(1 −  z)−2 )( 𝐴𝑗) → (𝑓𝑗 (z) (1 −  z)−2 )( 𝐴𝑗) in 

norm. Hence for  

x ∈ 𝒟(𝐴𝑗
2),  (𝑓𝑗)𝑖 (𝐴𝑗)x = ((𝑓𝑗)𝑖 (z)(1 − z)−2 )( 𝐴𝑗)(1 

− 𝐴𝑗)2 x → (𝑓𝑗 (z) (1 −  z)−2)( 𝐴𝑗)(1 − 𝐴𝑗)2x = 

𝑓𝑗(𝐴𝑗)x. Clearly  ∑ ‖𝑓𝑗(𝐴𝑗)x ‖𝑗  ≤  lim 

𝑠𝑢𝑝𝑖‖ ∑ (𝑓𝑗)𝑖(𝐴𝑗)𝑗 ‖. Since 𝑓𝑗(𝐴𝑗) is a closed 

sequence of operators with dense domain  

𝒟(𝑓𝑗(𝐴𝑗)) ⊃ 𝒟(𝐴𝑗
2),  𝑓𝑗 (𝐴𝑗) is bounded with 

∑ ‖𝑓𝑗(𝐴𝑗) ‖𝑗  ≤ 

  lim 𝑠𝑢𝑝𝑖‖ ∑ (𝑓𝑗)𝑖(𝐴𝑗)𝑗 ‖ . Again by the density of 

𝒟(𝐴𝑗
2), (𝑓𝑗)𝑖(𝐴𝑗) → 𝑓𝑗(𝐴𝑗) strongly.         ∎        

Theorem 3.2 (Hille–Yosida) Let 𝐴𝑗 be a 

densely defined sequence of operators on the 

Banach space X such that 

 (0, ∞) ⊂ 𝜚(𝐴𝑗) and M := su𝑝𝑛∈𝑁,𝜀>−1‖[(1 +

𝜀)R((1 + 𝜀) , 𝐴𝑗)] 𝑛‖ < ∞. Then 𝐴𝑗 is of half-plane 

type with 

 (1 + 𝜀)0 (𝐴𝑗) ≤ 0 and  ‖𝑒(1+𝜀)𝐴𝑗‖ ≤ M for all 𝜀 >

−1. 

Proof. First show that 𝐴𝑗 is of  half-plane type. 

Fix µ𝑗 such that Re µ𝑗 > 0. For 𝜀 > -1 large, 

more precisely for (1 + 𝜀) > |µ𝑗|
2

(2 Re µ𝑗) ⁄ , 

one has |(1 + 𝜀)  −  µ𝑗| < (1 + 𝜀). By the 

Laurent series expansion of the resolvent, 

∑ 𝑅(µ𝑗 , 𝐴𝑗)

𝑗

= ∑ ∑(µ𝑗 − (1 + 𝜀))𝑛 𝑅((1

∞

𝑛=0𝑗

+ 𝜀), 𝐴𝑗)𝑛+1 

and hence ∑ ‖𝑅(µ𝑗 , 𝐴𝑗)‖𝑗 ≤ 𝑀|∑ µ𝑗 − (1 + 𝜀)𝑗 |
𝑛
 / 

(1 + 𝜀)𝑛+1 = 𝑀 (⁄ (1 + 𝜀) − |∑ µ𝑗 − (1 + 𝜀))𝑗 | .  

Let  (1 + 𝜀) → ∞ to conclude ‖R(µ𝑗 , 𝐴𝑗) ‖ ≤ 

𝑀 Re µ𝑗  ⁄  . It follows that 𝐴𝑗 is of half-plane type 

with      (1 + 𝜀)0 (𝐴𝑗) ≤ 0. 

Define 𝑟𝑛,(1+𝜀)(𝑧) :=  (1 −  ((1 + 𝜀)z)/n)−𝑛 . For 

fixed 0 < 𝜀 < ∞ and large n ∈ N we have 

𝑠𝑢𝑝𝑅𝑒 𝑧≤(1+𝜀)|𝑟𝑛,(1+𝜀)(𝑧)|

≤ (𝑖𝑛𝑓𝑅𝑒 𝑧≤(1+𝜀) |1 −
(1 + 𝜀)𝑧

𝑛
|)

−𝑛

=  (1 −
(1 + 𝜀)(1 + 𝜀)

𝑛
)

−𝑛

 

Since (1 – (1 + 𝜀)(1 + 𝜀)/n)−𝑛 → 𝑒−(1+𝜀)(1+𝜀) as 

n → ∞, we have 𝑠𝑢𝑝𝑛‖𝑟𝑛,(1+𝜀)‖
∞

< ∞. Also, by 

hypothesis , ∑ ‖𝑟𝑛,(1+𝜀)(𝐴𝑗) ‖𝑗 =∑ ‖(1 −  (1 +𝑗

𝜀)/n)𝐴𝑗)−𝑛‖ = 

 ∑ ‖[(𝑛 (1 + 𝜀)𝑅(𝑛 ((1 + 𝜀), 𝐴𝑗⁄ )⁄ ]
𝑛

‖𝑗  ≤ M for all n 

∈ ℕ. Applying the Convergence Lemma 

yields ∑ ‖𝑒(1+𝜀)𝐴𝑗‖𝑗  ≤ M , as desired.          ∎ 

Remark 3.3. A more careful statement of the 

Convergence lemma and equally careful 
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analysis of the above proof would lead to the 

statement that for each x ∈ 𝑋  . One has 

𝑙𝑖𝑚𝑛𝑟𝑛,(1+𝜀)(𝐴𝑗)𝑥 = 𝑒(1+𝜀)𝐴𝑗 uniformly in (1+𝜀) 

from compact subintervals of [0 ,∞) . 

4. The Trotter-Kato Theorem  

While in the convergence lemma the function is 

approximated and the sequence of operators 

are fixed , in the following  fix the function and 

approximate the sequence of operators . The 

correct setup requires that the approximates 

(𝐴𝑗)𝑛  are ‘’of the same type’’ as the sequence 

of operators , with the relevant constants being 

uniformly bounded . 

More precisely a family of the sequence of 

operators ((𝐴𝑗)𝑖)𝑖 is called uniformly of half-

plane type (1 + 𝜀) ∈ ℝ ∪ {−∞} if each (𝐴𝑗)𝑖 are 

of half-plane type (1 + 𝜀) and 𝑠𝑢𝑝𝑖𝑀(𝛽+𝜀)(𝐴𝑗)𝑖 <

∞ for each 𝛽 + 𝜀 > ∞  (see ,e.g.,[9]) . 

Example 4.1. Let 𝐴𝑗 be of half-plane type 0, 

and let (𝐴𝑗)(1+𝜀)  := (1 + 𝜀)𝐴𝑗R((1 + 𝜀), 𝐴𝑗) for 

𝜀 > 0 be the Yosida approximants. Then the 

family ((𝐴𝑗)(1+𝜀))𝜀>0 are uniformly of half-plane 

type 0. Indeed, a little computation shows 

∑ R(µ𝑗  , (𝐴𝑗)(1+𝜀))

𝑗

= ∑
(1 + 𝜀)2

(µ𝑗 + (1 + 𝜀))2
 𝑅 (

(1 + 𝜀)µ𝑗

(1 + 𝜀) + µ𝑗  
, 𝐴𝑗)

𝑗

+
1

(1 + 𝜀) + µ𝑗
 

For the second term have ∑ |(1 + 𝜀) + µ𝑗|
−1

𝑗 ≤

min ((1 + 𝜀)−1,(Reµ𝑗)−1) .To estimate the first  

compute 

𝑅𝑒 ∑ (
µ𝑗  (1 + 𝜀)

(1 + 𝜀) + µ𝑗
)

𝑗

= ∑
(1 + 𝜀)2𝑅𝑒 µ𝑗 + (1 + 𝜀)|µ𝑗|

2

|(1 + 𝜀) + µ𝑗|2

𝑗

 

If 𝐴𝑗 be the sequence of generators of a 

bounded 𝐶0-semigroup, it satisfies an estimate 

∑ ‖R(µ𝑗, 𝐴𝑗) ‖𝑗  ≤ (1 + 𝜀) ∑ (Re µ𝑗) − 1 𝑗  for some 

ε > 0 and all Re µ𝑗 > 0. Given this, one obtains 

∑‖𝑅(µ𝑗  , (𝐴𝑗)(1+𝜀))‖

𝑗

≤ ∑
(1 + 𝜀)2

|(1 + 𝜀) + µ𝑗|2

𝑗

 
(1 + 𝜀)µ𝑗2

(1 + 𝜀)2𝑅𝑒µ𝑗 + (1 + 𝜀)|µ𝑗|2

+  ∑
1

𝑅𝑒 (1 + 𝜀) + µ𝑗

𝑗

 ≤ ∑
(𝜀 + 2)

𝑅𝑒 µ𝑗

𝑗

  

independent of  (1 + 𝜀). In the general case, fix 

𝜀 > −𝛽 , take Re µ𝑗 ≥ 𝛽 + 𝜀 and define 

 ε :=𝛽 + 𝜀 / (2(𝛽 + 𝜀) + 1). It follows that Re 

(µ𝑗 (2 Re µ𝑗  +  1)⁄  ) ≥ ε and this implies 

 (1 + 𝜀)2 (Re µ𝑗 − ε) ≥ 2(1 + 𝜀)ε Re µ𝑗, since 

𝜀 > 0 ,. From this  conclude that 

𝑅𝑒 ∑ (
µ𝑗  (1 + 𝜀)

(1 + 𝜀) + µ𝑗
)

𝑗

 

=  ∑
(1 + 𝜀)2𝑅𝑒µ𝑗 + (1 + 𝜀)|µ𝑗|

2

|(1 + 𝜀) + µ𝑗|2
 

𝑗

≥  𝜀 

and hence that 

∑‖𝑅(µ𝑗  , (𝐴𝑗)(1+𝜀))‖

𝑗

≤ ∑
(1 + 𝜀)2

((1 + 𝜀) + 𝑅𝑒 µ𝑗)2

𝑗

 (1

+ 𝜀)𝜀(𝐴𝑗) +
1

𝑅𝑒  µ𝑗 + (1 + 𝜀)
 

≤  ∑(1 + 𝜀)𝜀(𝐴𝑗) + 1

𝑗

 

independent of 𝜀 > 0 and µ𝑗 ≥ 𝛽 + 𝜀 . 

In the previous example  clearly have 

𝑙𝑖𝑚(1+𝜀)→∞R(µ𝑗, (𝐴𝑗)(1+𝜀)) = R(µ𝑗, 𝐴𝑗) in norm 

uniformly in µ𝑗 from compact subsets of the 

open halfplane (Re z > 0). 

Proposition 4.2. Let ((𝐴𝑗)𝑛)𝑛 be a family of 

sequence of operators, uniform of half-plane 

type with 

 (1 + 𝜀)0(𝐴𝑗) ≤ 0,and let 𝐴𝑗 be the sequence of 

operators such that R(µ𝑗, (𝐴𝑗)𝑛) → R(µ𝑗, 𝐴𝑗) in 

norm/strongly for all Re µ𝑗 > 0. Then 𝐴𝑗 is also 

of half-plane type 0. Moreover, for 0 < 𝜀 <

∞ and 𝑓𝑗 ∈ ℰ(𝐿(1+𝜀)) one has 𝑓𝑗 ((𝐴𝑗)𝑛) →𝑓𝑗 (𝐴𝑗) 
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in norm /strongly. 

Suppose furthermore that 𝐴𝑗 are densely 

defined. If 𝑓𝑗 ∈ 𝐻∞(𝐿(1+𝜀) ) and 𝑓𝑗 ((𝐴𝑗)𝑛) ∈ ℒ(X) 

for all n ∈ N with C := 𝑠𝑢𝑝𝑛 ∑ ‖𝑓𝑗  (𝐴𝑗)𝑛 ‖ 𝑗 < ∞, 

then also 𝑓𝑗(𝐴𝑗) ∈ ℒ(X), and 𝑓𝑗 ((𝐴𝑗)𝑛) → 𝑓𝑗(𝐴𝑗) 

strongly. 

Proof. The first two assertions are 

straightforward. Suppose that 𝐴𝑗 is densely 

defined; by Lemma 2.3 this implies already that 

𝒟(𝐴𝑗
2) is dense in X. Take x ∈ 𝒟(𝐴𝑗

2), 𝑓𝑗 ∈ 

𝐻∞(𝐿(1+𝜀) ) and 

 e(z) := 𝑓𝑗 (z)(1 − z)−2 ∈ ℰ(𝐿(1+𝜀)). 

Then  ∑ ‖e((𝐴𝑗)𝑛)(1 −  𝐴𝑗)2 x ‖𝑗  = 

 ∑ ‖𝑓𝑗  ((𝐴𝑗)𝑛)R(1, (𝐴𝑗)𝑛 )2(1 −  𝐴𝑗)2x  ‖𝑗  ≤ 

C∑ ‖R(1, (𝐴𝑗)𝑛)2(1 −  𝐴𝑗)2 x ‖𝑗 . 

Since  know already that e((𝐴𝑗)𝑛) → e(𝐴𝑗) and 

R(1, (𝐴𝑗)𝑛) → R(1, 𝐴𝑗),  conclude that 

∑ ‖𝑓𝑗  (𝐴𝑗)x ‖𝑗 = ∑ ‖e(𝐴𝑗)(1 −  𝐴𝑗)2x ‖𝑗   ≤ C 

∑ ‖R(1, 𝐴𝑗)2(1 −  𝐴𝑗)2 x ‖𝑗 = C ‖x‖. 

Since 𝒟(𝐴𝑗
2 ) is dense, it follows that 𝑓𝑗(𝐴𝑗) ∈ 

𝓛(X) with ∑ ‖𝑓𝑗(𝐴𝑗) ‖ 𝑗 ≤ C. To prove that 

 𝑓𝑗 ((𝐴𝑗)𝑛) → 𝑓𝑗(𝐴𝑗) (strongly),  need only to 

show 𝑓𝑗((𝐴𝑗)𝑛)x → 𝑓𝑗(𝐴𝑗)x for all x ∈ 𝒟(𝐴𝑗
2). So 

take x ∈ 𝒟(𝐴𝑗
2) and let y := (1 − 𝐴𝑗)2 x.  Have 

seen above that 𝑓𝑗 ((𝐴𝑗)𝑛)R(1,(𝐴𝑗)𝑛)2 y → 𝑓𝑗 

(𝐴𝑗)x, so estimate the difference 

 ∑ ‖ 𝑓𝑗((𝐴𝑗)𝑛)x − 𝑓𝑗  ((𝐴𝑗)𝑛)R(1, (𝐴𝑗)𝑛)
2

 y ‖𝑗 = 

∑ ‖𝑓𝑗  ((𝐴𝑗)𝑛)R(1, 𝐴𝑗)
2

 y −𝑗

 𝑓𝑗((𝐴𝑗)𝑛)R(1, (𝐴𝑗)𝑛)2 y‖ ≤  

C ∑ ‖R(1, 𝐴𝑗)2 y −  R(1, (𝐴𝑗)𝑛)2 y ‖𝑗 → 0 

by hypothesis.         ∎ 

Remark 4.3. As in the Convergence Lemma , 

there is version of Position 4.2 that yields some 

uniformity that ((𝑓𝑗)𝑖)𝑖 ⊂ 𝐻∞(𝐿(1+𝜀)) is uniformly 

bounded and 𝑠𝑢𝑝𝑖,𝑛 ∑ ‖(𝑓𝑗)𝑖((𝐴𝑗)𝑛)‖𝑗  < ∞ . 

Then the convergence (𝑓𝑗)𝑖((𝐴𝑗)𝑛)𝑥 →

(𝐴𝑗)
𝑖
(𝐴𝑗)𝑥) is uniform in i , for every x ∈ 𝑋  . 

Theorem 4.4. (Trotter–Kato) Suppose that, for 

each n ∈ ℕ, is    the sequence of generators of 

  C0 -semigroup, and that ∑ ‖𝑒(1+𝜀)(𝐴𝑗)𝑖‖𝑗  ≤  M for 

all 𝜀 > −1, n ∈ ℕ. Suppose further that 𝐴𝑗 are  

densely defined sequence of operators and for 

some ε0 > −1 one has (1 + 𝜀)0 ∈ (𝐴𝑗) and 

 R((1 + 𝜀)0 , (𝐴𝑗)𝑛) → R((1 + 𝜀)0 , 𝐴𝑗) strongly. 

Then 𝐴𝑗 sequence of generates  C0 -semigroup 

and one has 𝑒(1+𝜀)(𝐴𝑗)𝑛 x → 𝑒(1+𝜀)𝐴𝑗 x uniformly 

in  0 ≤ 𝜀 ≤ ∞, for each x ∈ X , ε > −1. 

Proof . The theorem is a consequence of 

Proposition 4.2 and the remark next to it , as 

soon as  can show that actually {𝑅𝑒 𝑧 > 𝑜} ⊂

𝔢(𝐴𝑗) and R(𝜇𝑗  , (𝐴𝑗)𝑛)→ 𝑅(𝜇𝑗 , 𝐴𝑗) for all 𝜇𝑗 >

0 . This is done like in [3 , Proposition 111.4.]            

∎ 

Remark 4.5. A common assumption on 𝐴𝑗 

implying the resolvent convergence is the 

following: the sequence of operators 𝐴𝑗 are 

densely defined,( (1 + 𝜀)0− 𝐴𝑗)  has dense 

range, and there exists a core 𝒟 of 𝐴𝑗 such that 

(𝐴𝑗)𝑛 x → (𝐴𝑗)x for all x ∈ 𝒟 . See [3 , Theorem 

111.4.9]. 

However, one might not always be given the 

sequence of operators 𝐴𝑗  . Its existence is 

ensured by the following condition: R((1 +

𝜀)0,(𝐴𝑗)𝑛) → Q ∈ ℒ(X) strongly, and Q has 

dense range. Indeed, by general arguments as 

in [7, Appendix A.5] one has Q = R((1 + 𝜀)0 , 

𝐴𝑗) for some possibly multi-valued of the 

sequence of operators 𝐴𝑗  , which is densely 

defined by the range assumption on Q. It 

remains to show that 𝐴𝑗  is in fact single-valued, 

i.e., Q  is injective. 

5 . The Universal Model and the Phillips 

Calculus  

The functional calculus for the sequence of 

operators of  half-plane type provides us with a 

wealth of functions 𝑓𝑗 where 𝑓𝑗(𝐴𝑗) are defined. 

It uses the Cauchy formula and only some 

information of the growth of the resolvent. To 

obtain more information, one has to make 

stronger assumptions, typically of the type that 

certain  𝑓𝑗(𝐴𝑗) are required  to be bounded 
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sequence  operators. An averaging over the 

(𝑓𝑗
’)s yields new representation formulas 

different from the Cauchy formula, and so more 

information about the functional calculus [9]. 

As an example of these fairly general 

considerations, let us suppose that 

𝐴𝑗   𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 generates a bounded 𝐶0 -

semigroup (𝑇𝑗(1 + 𝜀))𝜀>−1. For a finite measure 

 𝜇𝑗 ∈ M [0, ∞) one defines its Laplace transform 

by 

𝓛 ∑(𝜇𝑗)(𝑧)

𝑗

= ∫ 𝑒𝑧(1+𝜀)  ∑ 𝜇𝑗(𝑑(1

𝑗

+ 𝜀))         (𝑅𝑒 𝑧 ≤ 0)          

It is well-known that 𝓛(𝜇𝑗) is holomorphic on 

(Re z < 0), and bounded and continuous on (Re 

z ≤ 0). Moreover, 𝜇𝑗 is uniquely determined by 

𝓛(𝜇𝑗). 

If 𝑓𝑗 = 𝓛(𝜇𝑗) we define 

∑ 𝑓𝑗(𝐴𝑗)𝑥

𝑗

= ∫ ∑ 𝑇𝑗((1 + 𝜀))

𝑗
[0,∞)

𝜇𝑗(𝑑(1

+ 𝜀))         (𝑥 ∈ 𝑋) 

This yields an algebra homomorphism (𝜇𝑗 → 

𝓛(𝜇𝑗)( 𝐴𝑗)) : M[0, ∞) → 𝓛(X). 

By the following lemma, this is in accordance 

with the previous definitions. 

Lemma 5.1.  Let 𝜀 > −1, and let 𝑓𝑗 ∈ ℰ(𝐿(1+𝜀) ). 

Then there is  functions g𝑗 ∈ 𝑳𝟏(0, ∞) such that 

∑ 𝑓𝑗(𝐴𝑗)

𝑗

= ∫ ∑ g𝑗

𝑗

∞

0

(1 + 𝜀)𝑇𝑗(1 + 𝜀)𝑑(1 + 𝜀) 

If 𝑓𝑗 ∈ 𝐻∞(𝐿(1+𝜀)) is such that there is 𝜇𝑗 ∈ M[0, 

∞) with 𝑓𝑗 = 𝓛(𝜇𝑗), then indeed 

∑ 𝑓𝑗(𝐴𝑗)

𝑗

= ∫ ∑ 𝑇𝑗(1 + 𝜀)𝜇𝑗(𝑑(1 + 𝜀))

𝑗[0,∞]

 

where the left-hand side is defined by the 

functional calculus for 𝐴𝑗 as sequence of 

operators of half-plane type 0. 

Proof. To prove the first statement let (1 + 𝜀) ∈ 

(0, (1+𝜀 ))  and define ∑ g𝑗(1 + 𝜀) = 

1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)𝑒−𝑧(1+𝜀)𝑑𝑧𝑗𝑅𝑒𝑧= (1+𝜀)

 .Then g𝑗  ∈ 

𝑳𝟏(0, ∞) and Fubini’s theorem does the rest. 

For the second assertion  assume without 

restriction that  𝜀 < −1. Define e(z) = (1 − z)−2 , 

so 

 e𝑓𝑗, e ∈ ℇ . Find g𝑗 ∈ 𝑳𝟏(0, ∞) such that 𝓛(g𝑗) = 

e. Then e 𝑓𝑗= 𝓛(𝜇𝑗∗ g𝑗), and so 

∑(𝑒𝑓𝑗)

𝑗

(𝐴𝑗) =  ∫ ∑ 𝑇𝑗(1 + 𝜀)(𝜇𝑗 ∗ g𝑗)(𝑑(1
[0,∞)

+ 𝜀)) = 

∫ ∫ ∑ 𝑇𝑗(2(1 + 𝜀))𝜇𝑗(𝑑(1 + 𝜀))g𝑗(1

𝑗[0,∞)[0,∞)

+ 𝜀) 𝑑(1 + 𝜀)

= ∫ ∑ 𝑇𝑗(1 + 𝜀)g𝑗(1 + 𝜀)

𝑗[0,∞)

𝑑(1

+ 𝜀) 

∫ ∑ 𝑇𝑗(1 + 𝜀)𝜇𝑗(𝑑(1 + 𝜀))

𝑗[0,∞)

= ∑ 𝑒(𝐴𝑗)

𝑗

∫ 𝑇𝑗(1 + 𝜀)𝜇𝑗(𝑑(1

[0,∞)

+ 𝜀)) 

This yields the assertion.           ∎ 

Important about the Phillips calculus is the fact 

that it is all that one can expect in general from 

the functional calculus for semigroup sequence 

of generators ,  introduce a very special 

semigroup 

Example 5.2 (Shift semigroup) Let X = 𝑳𝟏 (0, 

∞) and let 𝑇𝑗(1 + 𝜀)𝑓𝑗(1 + 𝜀) := 𝑓𝑗 ((1 + 𝜀) + (1 +

𝜀)) for 𝜀 > −1. Then 𝑇𝑗 is as trongly continuous 

contraction semigroup on X with sequence of 

generators 𝐴𝑗 = 𝑑 𝑑(1 + 𝜀)⁄  on 𝒟(𝐴𝑗)= 𝑾𝟏,𝟏[0, 

∞). If we think of 𝑳𝟏 (0, ∞) as sitting inside 

𝑳𝟏 (ℝ), with all functions in 𝑳𝟏 (0, ∞) being zero 

on (−∞, 0), then the resolvent of 𝐴𝑗 can be 

written as R((1 + 𝜀), 𝐴𝑗) 𝑓𝑗 = 𝑒(1+𝜀) ∗ 𝑓𝑗 │(0,∞) , 

with 𝑒(1+𝜀)  (1 + 𝜀) = 𝑒(1+𝜀)(1+𝜀) 1(−∞,0) , for Re 

ε > −1. It can be shown that actually σ(𝐴𝑗) = 

(Re z ≤ 0). The Phillips calculus for this 

particular semigroup reads 
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𝓛(𝜇𝑗)( 𝐴𝑗) 𝑓𝑗 = ((𝜇𝑗)∼ ∗ 𝑓𝑗 )1(0,∞)    ,   (𝑓𝑗 ∈ 𝑳𝟏 (0, ∞)) 

where (𝜇𝑗)∼ (𝐵𝑗) = 𝜇𝑗 (−𝐵𝑗) for every Borel set 

𝐵𝑗 ⊂ ℝ . 

Claim: The mapping 

(𝜇𝑗 ⟼ 𝓛(𝜇𝑗)𝐴𝑗)) : M[0, ∞) → 𝓛(𝑳𝟏 (0, ∞)) 

is isometric. 

Proof. Clearly the mapping is contractive. Fix 

𝜇𝑗∈ M[0, ∞) and denote 𝑓𝑗 :=𝓛(𝜇𝑗).Fix 𝜓𝑗 ∈ 

𝑳𝟏 (0, ∞) and 𝜑𝑗 ∈ 𝑪𝟎 [0, ∞) such that 

∑ ‖𝜓𝑗‖
1

‖𝜑𝑗‖
∞

 𝑗 ≤ ∞ . Then 

∑|〈(𝑓𝑗𝐴𝑗)𝜓𝑗 , 𝜑𝑗〉|

𝑗

= ∑ |∫ 𝜓𝑗(2(1 + 𝜀))𝜇𝑗(𝑑(1

∞

0𝑗

+ 𝜀))𝜑𝑗(1 + 𝜀)𝑑(1 + 𝜀)|

= ∑ |∫ 𝜓𝑗(1

∞

0𝑗

+ 𝜀) ∫ 𝜓𝑗((1 + 𝜀) − (1

(1+𝜀)

0

+ 𝜀))𝜇𝑗(𝑑(1 + 𝜀))𝑑(1 + 𝜀)| 

Taking the supremum with respect to 𝜓𝑗 yields 

∑ 𝑠𝑢𝑝𝜓𝑗
|〈(𝑓𝑗(𝐴𝑗)𝜓𝑗 , 𝜑𝑗〉|

𝑗

= 𝑠𝑢𝑝𝜀>−1 ∑ |∫ 𝜓𝑗((1 + 𝜀) − (1

𝑡

0𝑗

+ 𝜀))𝜇𝑗(𝑑(1 + 𝜀))| 

By choosing suitable 𝜑𝑗 we see that 

∑ ‖(𝑓𝑗(𝐴𝑗)‖𝑗 = ∑ sup𝜑𝑗
sup𝜓𝑗𝑗 |〈(𝑓𝑗(𝐴𝑗)𝜓𝑗, 𝜑𝑗〉| ≥ 

|𝜇𝑗| ([0, (1 + 𝜀)0 ]) 

for any ε > −1. Letting (1 + 𝜀)0 → ∞ concludes 

the proof.             ∎               

As a consequence one obtains the following 

“transference” type result [9] . 

Corollary 5.3. Let 𝐴𝑗 the sequence of 

generates  bounded 𝐶0 -semigroup on the 

Banach space X .Then 

∑‖𝑓𝑗(𝐴𝑗)‖
𝓛(𝐴𝑗)

𝑗

 

≤ 𝑠𝑢𝑝ε>−1 ∑‖𝑇𝑗(1

𝑗

+ 𝜀)‖ ∑‖𝑓𝑗(𝑑/𝑑(1 + 𝜀))‖
𝓛(𝑳𝟏(0,∞)

𝑗

 

for every 𝑓𝑗 ∈ {𝓛(𝜇𝑗) | 𝜇𝑗 ∈ M[0, ∞)}. 

Proof. Let 𝑓𝑗  = 𝓛(𝜇𝑗). Then 𝑓𝑗(𝐴𝑗)x = 

∫ ∑ 𝑇𝑗(1 + 𝜀) 𝑥 𝜇𝑗(𝑑(1 + 𝜀))

𝑗

 

for all x ∈ X, whence 

∑‖𝑓𝑗(𝐴𝑗)‖

𝑗

≤ [𝑠𝑢𝑝𝜀>−1 ∑‖𝑇𝑗(1

𝑗

+ 𝜀)‖] ‖𝜇𝑗‖
𝑴[0,∞)

 

But ∑ ‖𝜇𝑗‖
𝑴[0,∞)𝑗   = ∑ ‖𝑓𝑗(𝑑 𝑑(1 + 𝜀))⁄ ‖   𝑗  was 

shown above.                  ∎ 

We can now state the main result. 

Proposition 5.4. Let 0 < 𝜀 < ∞  and let 𝑓𝑗  ∈ 

𝐻∞(𝐻(1+𝜀)). Then the following statements are 

equivalent: 

(i) 𝑓𝑗 (𝐴𝑗) are bounded sequence operators, for 

each sequence of generators of a bounded 

semigroup 

 𝑇𝑗 on a Banach space X. 

(ii) 𝑓𝑗(𝐴𝑗)  is a bounded operator, where 𝐴𝑗 = 

𝑑 𝑑(1 + 𝜀)⁄  sequence generates the left shift 

semigroup on  X = 𝑳𝟏(0, ∞). 

(iii) There exists 𝜇𝑗∈ M[0, ∞) such that 𝑓𝑗  = 

𝓛(𝜇𝑗). 

Proof. The implications (iii) ⇒ (i) ⇒ (ii) are 

trivial. Suppose that 𝑓𝑗(𝐴𝑗) are abounded 

sequence operators  on  X = 𝑳𝟏(0, ∞), where 𝐴𝑗 

= 𝑑 𝑑(1 + 𝜀)  ⁄ is the sequence of generators of 
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the left shift semigroup (𝑇𝑗(1 + 𝜀)𝜀 >−1 . Let 

(𝑓𝑗)𝑛(z) := 𝑓𝑗(z)[n/(n − z)]2 . Then (𝑓𝑗)𝑛(𝐴𝑗) → 

𝑓𝑗(𝐴𝑗) strongly. By Lemma 5.1 , (𝑓𝑗)𝑛=𝓛(g𝑗)𝑛 for 

certain (g𝑗)𝑛 ∈ 𝑳𝟏(0,∞). By example5.2 , 

∑ ‖(g𝑗)𝑛‖
1𝑗  =∑ ‖(𝑓𝑗)𝑛(𝐴𝑗)‖ 𝑗 , and this is clearly 

bounded independent of n. Since C0[0, ∞) is 

separable, the weak ∗   topology on bounded 

sets of M[0, ∞) is metrizable. By compactness, 

there exists  subsequence (𝑛𝑘)𝑘 and a 

measure 𝜇𝑗 ∈ M[0, ∞) such that ((g𝑗)𝑛)𝑘→ 𝜇𝑗 

weakly ∗ .  For fixed Re z < 0, the function 

 (1+𝜀) → 𝑒(𝜇𝑗)𝑧 is in 𝑪𝟎 [0, ∞), and hence 

∑ 𝑓𝑗(𝑧)[𝑛𝑘 (𝑛𝑘 − 𝑧)⁄ ]2

𝑗

= ∑((𝑓𝑗)𝑛)𝑘(𝑧)

𝑗

= ∫ ∑((g𝑗)𝑛)𝑘(1

𝑗

∞

0

+ 𝜀) 𝑒(1+𝜀)𝑧𝜇𝑗(𝑑(1 + 𝜀)) 

But clearly ((𝑓𝑗)𝑛)𝑘(z) → 𝑓𝑗(z) also, whence 𝑓𝑗  

= 𝓛(𝜇𝑗).          ∎ 

The proposition explains the importance of the 

Phillips calculus for results about approximation 

in norm, like the Post-Widder, the Phragmen-

Doetschand the Complex inversion formulas, 

see  

[3, Section III.5]. In fact it shows that the proofs 

given there are natural. 

6. Sectorial And Strong Strip-type Operators 

If the semigroup is a group, the spectrum of the 

sequence generators are contained in a vertical 

strip. So the appropriate functional calculus is 

for functions living  on that strip and not in a half 

plane. For reasons that will become clear later, 

it is desirable to consider horizontal strips 

instead of vertical ones (see ,e.g.,[9]). 

For ε >  −1 we define 

𝑆(1 + 𝜀)(1+𝜀) := {z ∈ ℂ | |Im z| < (1 + 𝜀)} 

and S(1 + 𝜀)0 := ℝ. 

Definition 6.1. The sequence of operators 𝐴𝑗 

on a Banach space X is called to be of strong 

strip-type 𝜀 ≥ −1 (in short: 𝐴𝑗 ∈ SStrip(1 + 𝜀)), if 

σ(𝐴𝑗) ⊂ 𝑆(1 + 𝜀)(1+𝜀)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and for every (

1+𝜀

𝜀
) > (1 +

𝜀) there is 𝑀
(

1+𝜀

𝜀
) 
 such that 

∑‖𝑅(1 + 𝜀 , 𝐴𝑗)‖

𝑗

≤ ∑

(1 + 𝜀)
(

1+𝜀
𝜀

)

|𝐼𝑚 (1 + 𝜀)| − (
1 + 𝜀

𝜀 ) 
 

𝑗

     (|𝐼𝑚 (1 + 𝜀)|

> (
1 + 𝜀

𝜀
) ) 

The least of the (1 + 𝜀) such that 𝐴𝑗 ∈ 

SStrip(1 + 𝜀) is denoted by (1 + 𝜀)𝑠𝑠𝑡(𝐴𝑗). 

For example, if −i𝐴𝑗   sequence of generates  

group (U(1 + 𝜀))(1+𝜀)∈ℝ such that ‖U(1 + 𝜀)‖ ≤ 

M 𝑒(1+𝜀)|1+𝜀| then 𝐴𝑗 is of strong strip-type (1 +

𝜀). One can weaken the hypothesis; in fact it 

suffices  that  the exponential group type θ(U ) 

≤ (1 + 𝜀). Here 

θ(U ) := inf{𝜀 > −1 | ∃𝜀 > 0 : ‖U (1 + 𝜀) ‖ ≤ (1 +

𝜀) 𝑒(1+𝜀)|1+𝜀|((1 + 𝜀) ∈ ℝ)}. 

With a strong strip-type  the sequence of 

operators 𝐴𝑗 ∈ SStrip(1 + 𝜀) there comes along 

a natural holomorphic functional calculus. One 

considers functions 𝑓𝑗  holomorphic on strips  

(1 + 𝜀)(1 + 𝜀)𝜑𝑗
with 𝜑𝑗  > (1 + 𝜀). If f has 

integrable decay a(1+𝜀) ± ∞, e.g., 

𝑓𝑗 = O(|𝑧|−(2+𝜀)) as |𝑧| ⟶ ∞ 

some 𝜀 > −1 , then 𝑓𝑗(𝐴𝑗) are defined by the 

usual Cauchy integral, the contour being the 

boundary of an appropriate strip. This gives a 

primary functional calculus for 𝐴𝑗 and is 

extended to a meromorphic functional calculus 

via the usual regularization procedure, see [7 

,Section 4.2]. Of course this functional calculus 

extends  the two half-plane calculi available for 

𝐴𝑗 . (Note that ± i𝐴𝑗 are both of halfplane-type 

and so, have natural functional calculi on left 

halfplanes.) 

It is clear that a result analogous to Proposition 

2.4 holds. The sequence of operators –i𝐴𝑗 

sequence generates  𝐶0 -group if and only if 𝐴𝑗 

is densely defined, of strong strip-type, and 

(𝑒𝑖(1+𝜀)𝑧)( 𝐴𝑗) is bounded for all (1 + 𝜀)∈ ℝ. In 

this case, one can set up a Phillips calculus and 
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obtains 

∑ 𝑓𝑗(𝐴𝑗) 𝑥

𝑗

= ∫ ∑ 𝑈(1 + 𝜀)𝑥𝜇𝑗(𝑑(1

𝑗

+ 𝜀))                  (𝑥 ∈ 𝑋) 

if 𝑓𝑗(z) = 𝜇 ĵ(z) = 𝑒𝑖(1+𝜀)𝑧 𝜇𝑗 (d(1+𝜀)) and 𝜇𝑗 is 

such that 𝑒(1+𝜀)|1+𝜀|𝜇𝑗(d(1+𝜀)) ∈ M(ℝ) for some  

(1+𝜀) > θ(U ). See [6] for proofs. 

Strong strip-type operators arise naturally as 

logarithms of sectorial operators [7,Proposition 

3.5.1], and the fact that there are sectorial 

sequence of operators without bounded 

imaginary powers yields the existence of 

natural examples of strong strip-type sequence 

of operators that do not sequence of generates  

group. For the sake of completeness,  give the 

definition of sectorial sequence of operators . 

Let (1 + 𝜀) ∈ [0, π] and define 

𝑆(1+𝜀)

= {𝑒𝑧|𝑧

∈ 𝑆(1

+ 𝜀)(1+𝜀)} {
𝑧 ≠ 0 |arg 𝑧 < (1 + 𝜀) ,   (𝜀 > −1)

[0 , ∞)              ,     (𝜀 = −1)
 

Definition 6.2. The sequence of operators 𝐴𝑗 

on a Banach space X is called sectorial of 

angle (1+𝜀) < π if σ(𝐴𝑗) ⊂  𝑆(1+ε)
̅̅ ̅̅ ̅̅ ̅  and for every 

(
1+𝜀

𝜀
) ∈ ((1 + 𝜀), π] there is 𝑀

(
1+𝜀

𝜀
) 
 such that 

∑ ‖(1 + 𝜀)R((1 + 𝜀), 𝐴𝑗) ‖𝑗 ≤ 𝑀
(

1+𝜀

𝜀
) 
(|arg (1 +

𝜀) |∈ [(
1+𝜀

𝜀
), π]). 

The least (1 + 𝜀) such that 𝐴𝑗 ∈ Sect(1 + 𝜀), is 

denoted by (1 + 𝜀)𝑠𝑒𝑐(𝐴𝑗). 

For sectorial operators there is a natural 

meromorphic functional calculus set up exactly 

in the same way as for the sequence of 

operators of strip- or of halfplane-type [7].(The 

functions live on larger sectors 𝑆𝜑𝑗
 , of course). 

The pay-off for semigroup theory lies in the fact 

that sequence of operators −𝐴𝑗 generates a 

bounded holomorphic semigroup if and only if 

𝐴𝑗   is sectorial of type < 𝜋 2⁄     .   [7 ,Section 

3.4]. 

There is strong link between sectorial 

and strip-type operators. It was proved 

essentially by Nollau that if 𝐴𝑗 is an injective 

sectorial sequence of operators of angle (1 + 𝜀) 

then log 𝐴𝑗 is of strong strip-type (1+𝜀) . In fact, 

it was proved in [4] that the strip-type of log(𝐴𝑗) 

is equal to the sectoriality type of 𝐴𝑗: (1 + ε)𝑠𝑠𝑡 

(log(𝐴𝑗)) = (1 + 𝜀)𝑠𝑒𝑐 (𝐴𝑗). In [5]  could even 

show that the spectral mapping theorem 

σ(log(𝐴𝑗)) = log(σ(𝐴𝑗) \ {0} holds. 

One can switch back and forth from 𝐴𝑗 to log 

𝐴𝑗  , as far as the functional calculi are 

concerned. Indeed, there is a composition rule 

𝑓𝑗 (log 𝐴𝑗) = (𝑓𝑗 (log z))( 𝐴𝑗) 

in the sense that 𝑓𝑗(log(𝐴𝑗)) is defined if and 

only if (𝑓𝑗(log z))(𝐴𝑗) is defined .The sequence 

of operators –i log(𝐴𝑗) sequence generates  𝐶0 -

group if and only if 𝐴𝑗 has bounded imaginary 

powers (𝐴𝑗
𝑖(1+𝜀)

)(1+𝜀)∈ℝ . (Since 𝑒𝑖(1+𝜀)𝑙𝑜𝑔 𝑧 = 

𝑧𝑖(1+𝜀) and in view of the composition rule 

above, this does not come as a surprise.) See 

[7] for proofs and more information.The 

symmetry between (injective) sectorial and 

strip-type sequence of operators, however,  is 

only partial. There are strong strip-type 

operators that are not logarithms of sectorial 

ones. (An example is −𝑑 d(1 + 𝜀) ⁄ on 𝑳𝟏(ℝ)). 

Here, the best result up to now isby Monniaux 

[8]; it states that if −i𝐴𝑗  sequence generates a 

𝐶0 -group U of type θ(U) < π, and if the space X 

is UMD, then 𝐴𝑗 is the logarithm of a sectorial 

sequence of operators. See [6 , Section 2.6 and 

5.1] for a recent new proof. 

Let us note that as in the semi group case , 

there are Convergence Lemmas and Trotter- 

Kato type results for sectorial and strip-type 

sequence of operators , cp. [7 , Section 2.6 and 

5.1]  

7 . Cosine Functions 

Turn to the treatment by functional calculus 

methods of cosine the sequence of operators 

functions. As a guiding intuition,  think of the 

sequence of  generators −𝐴𝑗 of a cosine 

function as −𝐴𝑗 = (−i 𝐵𝑗)2 where –i(𝐵𝑗) the 
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sequence of generate generates  group [9] . It 

is then pretty natural to consider a functional 

calculus on the parabola 

Π(1+𝜀) = {z2 | z ∈ S(1 + 𝜀)(1+𝜀) }. 

To define an operator of parabola-type (1 + 𝜀)  

need to specify a resolvent estimate that should 

hold outside every larger parabola. A natural 

way to find such a condition is to look at the 

negative sequence of  generators of  cosine 

functions . 

So let −𝐴𝑗 sequence of generates a cosine 

function Cos on the Banach space X, and 

assume That 

 ‖Cos(1 + 𝜀) ‖ ≤ M 𝑒(1+𝜀)|1+𝜀|, (1 + 𝜀) ∈ ℝ . By 

definition, 

(1 + 𝜀)𝑅 ∑((1 + 𝜀)2, −𝐴𝑗)

𝑗

= ∫ 𝑒−(1+𝜀)(1+𝜀)

∞

0

 𝐶𝑜𝑠 (1 + 𝜀)𝑑(1

+ 𝜀)            (𝑅𝑒 (1 + 𝜀) > (1 + 𝜀)) 

Taking norms and estimating yields 

             ∑ ‖𝑅(−(1 + 𝜀)2, 𝐴𝑗)‖𝑗 ≤
𝑀

|1+𝜀|(𝑅𝑒 (1+𝜀)−(1+𝜀))
                       (𝑅𝑒 (1 + 𝜀) > (1 +

𝜀))          (1)                           

The function (z → z2 ) : (Im z > (1 + 𝜀)) → 

ℂ 𝜋(1+𝜀)̅̅ ̅̅ ̅̅ ̅̅⁄    is biholomorphic, its inverse being 

on a branch of the square root. Writing 𝜇𝑗 = 

−(1 + 𝜀)2 in (1)  yields 

∑‖𝑅(𝜇𝑗 , 𝐴𝑗)‖

𝑗

≤ 𝑀 ∑
1

√|𝜇𝑗| (|𝐼𝑚 √𝜇𝑗|) − (1 + 𝜀) )
          (𝜇𝑗

∉ Π(1+𝜀)
̅̅ ̅̅ ̅̅ ̅̅ ) 

This expression is actually independent of the 

branch of the square root  take. It yields the 

canonical resolvent estimate for a parabola-

type sequence of operators . 

Definition 7.1. Let ε >  −1  and define Π(1+𝜀) := 

{z2 | z ∈ S(1 + 𝜀)(1+𝜀) }. The sequence of 

operators 𝐴𝑗 on a Banach space X is called to 

be of parabola-type (1 + 𝜀) (in short: 𝐴𝑗 ∈ 

Para(1 + 𝜀)) if 

 σ(𝐴𝑗) ⊂Π(1+𝜀)
̅̅ ̅̅ ̅̅ ̅̅  and for each (

1+𝜀

𝜀
) > (1 + 𝜀) 

there exists 𝑀
(

1+𝜀

𝜀
)
 such that 

∑‖𝑅(𝜇𝑗 , 𝐴𝑗)‖

𝑗

≤ ∑

𝑀
(

1+𝜀
𝜀

)

√|𝜇𝑗| (|𝐼𝑚 √𝜇𝑗|) − (
1 + 𝜀

𝜀 ))

  

𝑗

                  (𝜇𝑗

∉ Π
(

1+𝜀
𝜀

)
̅̅ ̅̅ ̅̅ ̅̅ ) 

The least of the (1 + 𝜀) such that 𝐴𝑗 ∈ Para(1 +

𝜀) is denoted by (1 + 𝜀)𝑝𝑎𝑟 (𝐴𝑗). 

Have seen above that if −𝐴𝑗 sequence of 

generates a cosine function of exponential 

growth type (1+𝜀) then 𝐴𝑗 is of parabola-type 

(1 + 𝜀). Here is another example. 

Lemma 7.2. Let 𝐵𝑗 ∈ SStrip(1 + 𝜀). Then 𝐴𝑗 := 

(𝐵𝑗)2 ∈ Para(1 + 𝜀). 

Proof. Fix (
1+𝜀

𝜀
) > (1 + 𝜀) and 𝜇𝑗 ∈  ℂ Π

(
1+𝜀

𝜀
) 

̅̅ ̅̅ ̅̅ ̅̅⁄   . 

Since 𝐵𝑗 is of strong strip-type,  find 𝑀
(

1+𝜀

𝜀
)
 such 

that 

∑ ‖R((1 + 𝜀), 𝐵𝑗) ‖𝑗  ≤ 𝑀
(

1+𝜀

𝜀
)
 (|Im (1 + 𝜀)| 

−(
1+𝜀

𝜀
))−1( |Im (1 + 𝜀)| > (

1+𝜀

𝜀
) ). 

Taking (1 + 𝜀) :=√𝜇𝑗 (either choice) yields . 

𝑅(𝜇𝑗, 𝐴𝑗) =  ((1 + 𝜀)2 − (𝐵𝑗)2)−1

= −𝑅((1 + 𝜀), 𝐵𝑗)𝑅(−(1 + 𝜀) , 𝐵𝑗)

=
1

2(1 + 𝜀)
(𝑅((1 + 𝜀) , 𝐵𝑗)

− 𝑅(−(1 + 𝜀) , 𝐵𝑗)) 

by the resolvent identity. Estimating the norm 

yields the assertion.         ∎ 

And yet another one. 

Lemma 7.3. Let ε > −1 and let 𝐴𝑗 be sequence 

of operators on a Banach space X such that 

 σ(𝐴𝑗) ⊂ Π(1+𝜀) and 

∑ ‖R(𝜇𝑗, 𝐴𝑗)  ‖ 𝑗 ≤ (1 + 𝜀) dist(𝜇𝑗, Π(1+𝜀))
−1              

(𝜇𝑗 ∉  Π(1+𝜀)̅̅ ̅̅ ̅̅ ̅̅  ) 
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for some 𝜀 > 0. Then 𝐴𝑗 ∈ Para(1 + 𝜀). More 

precisely, 

∑‖𝑅(𝜇𝑗 , 𝐴𝑗)‖

𝑗

≤ ∑
(1 + 𝜀)

√|𝜇𝑗| (|𝐼𝑚 √𝜇𝑗|) − (1 + 𝜀) )
 

𝑗

         (𝜇𝑗

∉ Π(1+𝜀)̅̅ ̅̅ ̅̅ ̅̅  ) 

Proof. Let |Im (1 + 𝜀) | > (1 + 𝜀). It suffices to 

show that 

|(1 + 𝜀)| (|Im (1 + 𝜀) | − (1 + 𝜀)) ≤ dist((1 + 𝜀)2 , 

Π(1+𝜀) ), i.e. 

|(1 + 𝜀)2  −  𝑧2|= |(1 + 𝜀)  −  z||(1 + 𝜀)  +  z| ≤ 

|(1 + 𝜀)| (|Im (1 + 𝜀) | − (1+𝜀)) 

for all z such that |Im z| ≤ (1 + 𝜀). But |z − (1 +

𝜀)| ≥ (|Im (1 + 𝜀)| − (1 + 𝜀)) and |z +  (1 + 𝜀)| ≥ 

(|Im (1 + 𝜀)| −(1 + 𝜀)). And at least one of the 

factors |(1 + 𝜀)  −  z| , |(1 + 𝜀)  +  z| i(1 + 𝜀) ≥ 

|(1 + 𝜀)|, for trivial geometrical reasons.             

∎ 

Corollary 7.4. Let X = H be a Hilbert space and 

let 𝐴𝑗 be such the condition of lemma 7.3  with 𝜀 

= 0, and so is of parabola-type .that its 

numerical range and spectrum is contained in 

Π(1+𝜀)̅̅ ̅̅ ̅̅ ̅̅   .Then 𝐴𝑗 satisfies with 𝜀 = 0, and so is of 

parabola-type. 

 Set up a functional calculus for a parabola-type 

of the sequence of operators 

 𝐴𝑗 ∈ Para(1 + 𝜀) in the obvious fashion. Let 

𝜑𝑗  > (1 + 𝜀) and let 

ℰ(Π𝜑𝑗
) := 𝑓𝑗 ∈ {𝒪(Π𝜑𝑗

) | 𝑓𝑗 (z) = O( |𝑧|−ℰ) as z → 

∞, for some ε > ½ } 

Then 

𝑓𝑗(1 + 𝜀)

=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)

𝑗

𝑑𝑧

𝑧 − (1 + 𝜀)𝜕Π
(

1+𝜀
𝜀

) 

             ((1 + 𝜀)

∈ Π
(

1+𝜀
𝜀

) 
)     

by Cauchy’s theorem, where (
1+𝜀

𝜀
) ∈ ((1 + 𝜀), 

𝜑𝑗).  Define 

𝑓𝑗(𝐴𝑗) =
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)

𝑗𝜕Π
(

1+𝜀
𝜀

) 

𝑅(𝑧 , 𝐴𝑗)𝑑𝑧

=  
−1

𝜋𝑖
 ∫ 𝑓𝑗(𝑧2)

𝑖(
1+𝜀

𝜀
) +∞

𝑖(
1+𝜀

𝜀
) −∞

𝑧𝑅(𝑧2, 𝐴𝑗)𝑑𝑧 

and as usual this does not depend on the 

choice of (
1+𝜀

𝜀
)  . In the usual fashion one 

shows that this defines an algebra 

homomorphism 

Φ := ( 𝑓𝑗 → 𝑓𝑗 (𝐴𝑗)) : ℰ(Π𝜑𝑗
) → 𝓛(X), 

and that it respects resolvents: 

((1 + 𝜀)− z)−1 (𝐴𝑗) = R((1 + 𝜀), 𝐴𝑗)                 

((1 + 𝜀) ∉ Π𝜑𝑗
). 

Therefore, a meromorphic functional calculus in 

the sense of [7, Section 1.3] is defined, and 

there is a canonical definition of  𝑓𝑗(𝐴𝑗) for 

meromorphic functions f on Π𝜑𝑗
 that are 

regularisable by elements of ℰ(Π𝜑𝑗
). Of course 

one obtains a corresponding Convergence 

Lemma in the case that 𝐴𝑗 is densely defined. 

If the parabola-type of the sequence operators 

𝐴𝑗 arises as a square 𝐴𝑗 = (𝐵𝑗)2 of a strong 

strip-type sequence of operators 𝐵𝑗 , then there 

is an obvious composition rule: 

Proposition 7.5. Let 𝐵𝑗 ∈ SStrip(1+𝜀) and 𝐴𝑗 := 

(𝐵𝑗)2. Let 𝜑𝑗  > (1+𝜀) and 𝑓𝑗 ∈ ℳ(Π𝜑𝑗
) such that 

 𝑓𝑗(𝐴𝑗) is defined. Then [𝑓𝑗(z2)]( 𝐵𝑗) is defined 

and 

𝑓𝑗 (z2)( 𝐵𝑗) = 𝑓𝑗(𝐴𝑗). 

Proof. By [7, Proposition 1.3.6] one may 

suppose without loss of generality that 𝑓𝑗 

∈ ℇ(Π𝜑𝑗
). Then one may perform a computation 

similar to [7, p.43,p.96/97]. Butit is even 

simpler: 

∑ 𝑓𝑗

𝑗

(𝐴𝑗  ) =
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧)𝑅(𝑧, 𝐴𝑗  )

𝑗𝜕⊓
(

1+𝜀
𝜀

)

𝑑𝑧

=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧2)2𝑧𝑅(𝑧2, (𝐵𝑗 )2)

𝑗𝐼𝑚 𝑧=(
1+𝜀

𝜀
)

𝑑𝑧 
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=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧2)[𝑅(𝑧, 𝐵𝑗 )

𝑗𝐼𝑚 𝑧=(
1+𝜀

𝜀
)

− 𝑅(−𝑧, 𝐵𝑗  )] 𝑑𝑧 

=
1

2𝜋𝑖
∫ ∑ 𝑓𝑗(𝑧2)[𝑅(𝑧, 𝐵𝑗 )

𝑗[𝐼𝑚 𝑧=(
1+𝜀

𝜀
)]

𝑑𝑧

= ∑[𝑓𝑗(𝑧2)]

𝑗

(𝐵𝑗) 

with the appropriate orientations of the 

contours.            ∎ 

If we shift a parabola-type the sequence of 

operators far enough to the right, we obtain a 

sectorial sequence of operators (of arbitrary 

small angle) (see ,e,g.,[9]). 

Proposition 7.6. Let ε > −1 and let 𝐴𝑗 be the 

sequence of operators on the Banach space X 

such that 

∑‖𝑅(𝜇𝑗 , 𝐴𝑗)‖

𝑗

≤ ∑
𝑀

√|𝜇𝑗| (|𝐼𝑚 √𝜇𝑗|) − (1 + 𝜀) )𝑗

          (𝜇𝑗

∉ Π(1+𝜀)
̅̅ ̅̅ ̅̅ ̅̅ ) 

 

Let (𝐵𝑗 )θ := 𝐴𝑗 + ((1 + 𝜀)/ cos θ)2 . Then (𝐵𝑗)θ 

is sectorial of angle π / 2 − θ. For θ = 0 one has 

even 

∑‖𝑅(𝜇𝑗  , (𝐵𝑗)0)‖

𝑗

≤ 2𝑀 ∑
1

|𝑅𝑒 𝜇 𝑗|
𝑗

                  (𝑅𝑟 𝜇𝑗

< 0) 

whence −(𝐵𝑗 )0 is actually of half-plane type 0. 

Proof.  First prove the assertion for (𝐵𝑗)0. Let 

Re 𝜇𝑗 < 0 and find (1 + 𝜀) = x + iy such 

that (1 + 𝜀)2 = 𝜇𝑗 −  (1 + 𝜀)2 and y > (1 + 𝜀). By 

assumption on 𝜇𝑗  , x2 < y 2 −  (1 + 𝜀)2 . Then 

∑‖𝑅(𝜇𝑗 , (𝐵𝑗 )0)‖

𝑗

= ∑‖𝑅((1 + 𝜀)2 , 𝐴𝑗)‖

𝑗

≤
𝑀

√𝑥2 + 𝑦2  (𝑦 − (1 + 𝜀))
 

But Re 𝜇𝑗  = Re (1 + 𝜀)2 + (1 + 𝜀)2 = −(y 2 − 

(1 + 𝜀)2 − x2 ), and hence 

.
|𝑅𝑒 ∑ 𝜇𝑗𝑗 |

√𝑥2+𝑦2  (𝑦−(1+𝜀))
=

𝑦2−(1+𝜀)2−𝑥2

√𝑥2+𝑦2  (𝑦−(1+𝜀))
 ≤

𝑦2−(1+𝜀)2

𝑦(𝑦−(1+𝜀))
=

 
𝑦+(1+𝜀)

𝑦
= 1 +

𝑦

(1+𝜀)
 ≤ 2 

Fix θ ∈ (0, π/2).  Establish the estimate 

∑‖𝑅(𝜇𝑗 , 𝑒𝑖𝜃(𝐵𝑗)𝜃)‖

𝑗

≤
2𝑀

(𝐶𝑜𝑠 𝜃)|∑ 𝑅𝑒 𝑗 𝜇𝑗|
         (𝑅𝑒 𝜇𝑗

< 0) 

and this implies what  stated in the proposition. 

Let Re 𝜇𝑗< 0 and find (1 + 𝜀) = x + iy such that 

 y > (1 + 𝜀)  and (1 + 𝜀)2 = (𝑒−𝑖𝜃)𝜇𝑗− ((1 + 𝜀) / 

cos θ)2 .  

 Then 𝜇𝑗 = 𝑒𝑖𝜃((1 + 𝜀)2 + (1 + 𝜀) / cos θ)2 ) and 

so 

−𝑅𝑒 𝜇𝑗

cos 𝜃
 =  𝑦2 − ((1 + 𝜀) cos 𝜃⁄ )2 − 𝑥2

+ (tan 𝜃)2𝑥𝑦

= (𝑦2 − (1 + 𝜀)2)(1 + 𝑡𝑎𝑛2𝜃)

− (𝑥 − 𝑦 𝑡𝑎𝑛𝜃)2 

and this  i𝜀 > 0 by hypothesis. All in all we can 

estimate 

∑‖𝑅(𝜇𝑗  , 𝑒𝑖𝜃(𝐵𝑗)𝜃)‖

𝑗

= ∑‖𝑅((1 + 𝜀)2 , 𝐴𝑗)‖

𝑗

≤
𝑀

|(1 + 𝜀)|(𝐼𝑚 (1 + 𝜀) − (1 + 𝜀))
 

= ∑
𝑀 cos 𝜃

|𝑅𝑒 𝜇𝑗|
  

(−𝑅𝑒 𝜇𝑗 cos 𝜃⁄ )

√𝑥2 + 𝑦2  (𝑦 − (1 + 𝜀))
𝑗

 

𝑀 cos 𝜃

∑ |𝑅𝑒 𝜇𝑗|𝑗
 [

(𝑦2 − (1 + 𝜀)2)(1 + 𝑡𝑎𝑛2𝜃) − (𝑥 − 𝑦 tan 𝜃)2

√𝑥2 + 𝑦2  (𝑦 − (1 + 𝜀))
] 

≤
𝑀 cos 𝜃

|𝑅𝑒 ∑ 𝜇𝑗
𝑗 |

 [
(𝑦 + (1 + 𝜀))(1 + 𝑡𝑎𝑛2𝜃)

√𝑥2 + 𝑦2
]

≤
2𝑀

(cos 𝜃)|𝑅𝑒 ∑ 𝜇𝑗
𝑗 |

 

This concludes the proof.          ∎ 

One can easily show that a composition 

rule 

𝑓𝑗 ((𝐵𝑗)θ) = [𝑓𝑗  (z + ((1+𝜀) / cos θ)2)](𝐴𝑗) 
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holds when 𝑓𝑗((𝐵𝑗)θ) is defined by the functional 

calculus for sectorial sequence of operators 

(oral so, in the case  θ = 0, by the one for half 

plane-type operators). By [7, Proposition1.3.6] 

one needs to know it only for functions 𝑓𝑗  

belonging to a generating set for the primary 

calculus for (𝐵𝑗)θ . Here the assertions follows 

from Cauchy’s theorem . 

How can access cosine sequence of operators 

functions by the functional calculus? Let 𝐴𝑗  be 

of parabola-type ε >  −1 . Consider the 

functions 

(𝑓𝑗)(1+𝜀)(𝑧) = cos((1 + 𝜀)√𝑧)             ((1 + 𝜀)

∈ ℝ) 

which are bounded holomorphic functions on 

every parabola Π𝜑𝑗
, 𝜑𝑗> 0. So 

                           𝐶𝑜𝑠𝐴𝑗
(1 + 𝜀) := (𝑓𝑗)(1+𝜀) (𝐴𝑗)  

((1 + 𝜀) ∈ ℝ)                                           (2) 

is a well-defined family of closed sequence of 

operators, and it is no surprise that the 

analogue of Proposition 2.4 holds. 

Proposition 7.7.  Let 𝐴𝑗   be sequence of 

operators of parabola-type ε > −1 on the 

Banach space X. Then −𝐴𝑗   sequence of 

generates a cosine function (Cos(1 + 𝜀))(1+𝜀)∈ℝ 

if and only if 𝐴𝑗 is densely defined and 

𝑐𝑜𝑠𝐴𝑗  (1 + 𝜀) (defined by (2)) is  bounded 

sequence of operators for each (1 + 𝜀) ∈ ℝ, 

satisfying 

𝑠𝑢𝑝(1+𝜀)∈[0,2] ∑ ‖𝐶𝑜𝑠𝐴𝑗   (1 + 𝜀) ‖𝑗  < ∞. In this 

case Cos(1+𝜀) = 𝐶𝑜𝑠𝐴𝑗   (1 + 𝜀), (1 + 𝜀) ∈ ℝ. 

Proof. Suppose that −𝐴𝑗   be the sequence of 

generates a cosine function Cos, fix 𝜇𝑗 > (1+𝜀)2 

, and let 

 x ∈ 𝒟(𝐴𝑗). Then  x ∈ 𝒟(𝐶𝑜𝑠𝐴𝑗   (1 + 𝜀)) for every 

ε >  −1. One has 

𝐶𝑜𝑠𝐴𝑗  (1 + 𝜀)x = [(𝑓𝑗)(1+𝜀)/(𝜇𝑗 + z)]( 𝐴𝑗)( 𝜇𝑗 + 𝐴𝑗)x 

and (1 + 𝜀) ⟼ 𝐶𝑜𝑠𝐴𝑗  (1 + 𝜀)x is continuous, by 

Lebesgue’s theorem. Taking Laplace 

transforms and applying Fubini’s theorem yields 

(with y := (𝜇𝑗+ 𝐴𝑗)x) 

∫ 𝑒−(1+𝜀)(1+𝜀)

∞

0

∑ 𝐶𝑜𝑠𝐴𝑗  

𝑗

(1 + 𝜀)x d(1 + 𝜀)

=
1

2𝜋𝑖
∫ (∫ 𝑒−(1+𝜀)(1+𝜀)

∞

0

cos((1

∂Π
(

1+𝜀
𝜀

)

+ 𝜀)√𝑧) 𝑑(1

+ 𝜀)) ∑
1

𝜇𝑗 + 𝑧
𝑗

 𝑅(𝑧 , 𝐴𝑗)𝑑𝑧𝑦 

=  
1

2𝜋𝑖
∫ ∑

(1 + 𝜀)

((1 + 𝜀)2 + 𝑧)(𝜇𝑗 + 𝑧)
𝑗∂Π

(
1+𝜀

𝜀
)

 𝑅(𝑧 , 𝐴𝑗)𝑑𝑧𝑦 

= (1 + 𝜀)((1 + 𝜀)2 + 𝐴𝑗)−1 (𝜇𝑗 + 𝐴𝑗)−1 𝑦

=  (1 + 𝜀)𝑅((1 + 𝜀)2, −𝐴𝑗) 𝑥 

for (1 + 𝜀) > (1+𝜀). Uniqueness of Laplace 

transforms yields 𝐶𝑜𝑠𝐴𝑗  (1 + 𝜀) x = Cos(1 + 𝜀) x,  

ε >  −1 .Since 𝒟(𝐴𝑗) is dense and 𝐶𝑜𝑠𝐴𝑗  (1 + 𝜀)  

are closed sequence of operators, 

 𝐶𝑜𝑠𝐴𝑗   ((1 + 𝜀)1 + 𝜀) = Cos(1 + 𝜀) are bounded 

sequence operators for every ε >  −1. 

Conversely, suppose that 𝐶𝑜𝑠𝐴𝑗  (1 + 𝜀)  

are bounded sequence of  operators for every 

ε > −1 and that 𝑠𝑢𝑝(1+𝜀)∈[0,2] ∑ ‖𝐶𝑜𝑠𝐴𝑗   (1 +𝑗

𝜀) ‖ < ∞. By general functional calculus, 

𝐶𝑜𝑠𝐴𝑗   satisfies the cosine law [1, (3.88)], and 

so [1, Lemma 3.14.3] shows that 𝐶𝑜𝑠𝐴𝑗    is 

exponentially bounded. As seen above, 𝐶𝑜𝑠𝐴𝑗   

(1 + 𝜀)x is continuous for all x ∈ 𝒟(𝐴𝑗), hence by 

the density of 𝒟(𝐴𝑗), this is true even for all x ∈ 

X. Hence, 𝐶𝑜𝑠𝐴𝑗   is cosine function. But the 

computation above (together with density of 

𝒟(𝐴𝑗)) shows that the Laplace transform of 

𝐶𝑜𝑠𝐴𝑗  is (1 + 𝜀)R((1 + 𝜀)2 , −𝐴𝑗), whence −𝐴𝑗   

are  the the sequence of generators of 𝐶𝑜𝑠𝐴𝑗  .          

∎ 

Using a Convergence Lemma for the functional 

calculus on parbolas, one can  aim for rational 

approximation results for cosine functions. 

Similarly, a Trotter-Kato type result holds. 
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