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An Algorithmic Random-Integer Generator based on the 
Distribution of Prime Numbers

We talk about random when it is not possible to determine a pat-
tern on the observed out-comes. A computer follows a sequence 
of fixed instructions to give any of its output, hence the difficulty 
of choosing numbers randomly from algorithmic approaches. 
However, some algorithms like the Linear Congruential algo-
rithm and the Lagged Fibonacci generator appear to produce 
“true” random sequences to anyone who does not know the se-
cret initial input [1]. Up to now, we cannot rigorously answer the 
question on the randomness of prime numbers [2, page 1] and 
this highlights a connection between random number generator 
and the distribution of primes. From [3] and [4] one sees that it is 
quite naive to expect good random reproduction with prime num-
bers. We are, however, interested in the properties underlying 
the distribution of prime numbers, which emerge as sufficient or 
insufficient arguments to conclude a proof by contradiction which 
tends to show that prime numbers are not randomly distributed. 
To achieve this end, we use prime gap sequence variation. Our 
algorithm makes possible to deduce, in a binary choice case, 
a uniform behavior in the individual consecutive occurrence of 
primes, and no uniformity trait when the occurrences are taken 
collectively.
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1 Introduction 

The use of randomness is needed in almost all 

areas, including cryptography [5] and 

bioinformatics [6]. The latter article gives an 

alert about the use of built in random 

implementations. In general, we do not produce 

true randomness, since the approach is 

algorithmic; hence we more commonly use 

pseudo random number generator (PRNG). 

PRNGs are periodic, and larger periods give 

better random imitation; that is why a major 

consideration in the choice of a pseudo random 

number generator is the size of its period, 

because this directly affects the frequency that 

a generator can be used. Another common 

issue with PRNG algorithms is the seeding or 

the initialization, since this is actually the 

construction of a sequence following states, two 

sequences having the same initial state must 

be identical. Nevertheless a good seeding may 

result from the aim of the random 

implementation; for example, in P&C Game [7], 

the author uses the first click of the player to 

seed the generator. 

The main core of a PRNG is the black box to 

test for acknowledgment of pseudo-

randomness. Among the most well-known 

pseudo-random number generator is the linear 

congruential generator. The formula for the 

algorithm it uses is sn+1 ≡ (a·sn + c)[m], where 

≡ ·[m] denotes the arithmetic modulo m. There 

is a lot of investigations in the choice of the 

integers a and c to get a good quality of that 

PRNG. The most popular PRNG used is the 

Mersenne Twister which relies on Feedback 

Shift Registers by generating numbers 

mathematically in terms of hardware. The 

procedure can be seen as follows: an even 

number of positions are selected, the generator 

operates by performing XOR on the bits at 

these positions, taking the result as the new 

leftmost bit, and shifting the rest of the string 

right by one [1]. 

Positive integers having only two divisors, 1 or 

itself. These numbers called primes apart from 

belief up to now, are not well understood. And 

that is our concern, because randomness can 

be seen as a missing of information and so the 

question is why do not we use our ignorance to 

produce ignorance? This gives the importance 

of such a study because with enough 

improvement we may say that either we have 

produced random or got a better understanding 

of the distribution of primes. However, Lemke 

Oliver and Soundararajan saw that in the first 

billion primes, a 1 is followed by a 1 about 18% 

of the time, by a 3 or a 7 each 30% of the time, 

and by a 9 22% of the time. They found similar 

results when they started with primes that 

ended in 3, 7 or 9: variation, but with repeated 

last digits the least common. The bias persists 

but slowly decreases as numbers get larger [3]. 

Therefore, there is not much randomness as 

one imagines, and the expected results are 

more related to the understanding of the 

distribution of prime numbers. 

From Zhang’s Theorem [8], we know that there 

exists a bound B < 7·107 such that there are 

infinitely many integers pairs of prime numbers 

p < q < p+B. Some other works that we will not 

mention have been done in that direction. Our 

algorithm for random integer generator uses the 

variation of the prime gap sequence. Given two 

different prime gaps gi, gj ≤B, Zhang’s Theorem 

allows us to say that there are infinitely many 

pairs of primes p, p + gi and p, p + gj. So we 

can say that the prime gap progress is not 

monotone, because gi and gj can certainly 

appear in decreasing and increasing order. 

Although Zhang result does not prove the twin 

prime conjecture [9], these works ensure 

altogether the consistency of an algorithm to 

produce "random" behavior relying on the 

variation of the prime gap sequence. 

In the sequel, after a brief presentation of a 

PRNG structure we will be giving details of our 

algorithm according to the given PRNG 

description. That is to define what we call first 

left minimum function (flm), and the update 

states. We end with some tests of pseudo-

randomness. 

2 Structure of Pseudo Random Integer 
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Generator 

Typically, there is a set S of states, and a 

function f:S → S for state update (see [10, 

chapter 3]). There is an output space O and 

function h:S → O. Usually the output space is 

taken to be the interval (0, 1), but that 

correspond to a generator of real number. In 

our case however, we consider any finite set of 

labels or integers for simplicity. After choosing 

the seed, the sequence of random integers are 

generated as follows 

 

 

 

3 First Left Minimum (flm) Function 

Let G = (g1, g2, . . . , gn) ∈ 𝔼n, where E is a non- 

empty ordered set of objects. We define the 

first left minimum of G as 

 

 

 

Indeed, it is the first left strict minimum value 

between two consecutive components of G 

starting on the left; with the particularity that in 

the worst case where there is no left strict 

minimum, the output is the last component. 

Next, we show that, in any situation, flm gives 

an output. 

Proof. Let 𝔼 be a non empty ordered set of 

objects and N ∈ ℕ. We take G = (g1, g2, . . . , 

gN ) ∈ 𝔼N . Let gj, 1 ≤ j < N be the element at the 

jth position in the tuple G. We assume that g1 > 

g2 > . . . > gj, and thus we have to consider two 

cases: 

• gj < gj+1, then flmN (G) = gj; 

• gj > gj+1, then flmN (G) ∈ {gj+1, gj+2, . . . , gN }. 

This leads us either to the output gj or to the 

same situation with gj+1. So it only remains to 

make sure that flmN gives an output when j = N. 

This is satisfied, because, when j = N, the 

output is flmN(G) = gN which appears to be a 

situation when the components of G are in 

decreasing (not necessarily strict) order from 

the left. 

Example: Let 𝔼 = ℕ, and consider G1 = (5, 4, 3, 

6, 2), G2 = (1, 3, 5, 4, 2), G3 = (8, 7, 5, 4, 2), 

and G4 = (4, 4, 3, 2, 5) Then we have 

 

 

 

From the definition of an flm function, one can easily deduce the following properties. 
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Proposition 1. Let 𝔼 be a non empty ordered

set. We have

a)  flmn : 𝔼 n → 𝔼

            G → flmn(G). 

      b) flm2 = min. 

     c) Let G = (g1, g2, . . . , gn) ∈ 𝔼, 

 

 

 

where min return the minimum value of its 

arguments and δgi,gj denotes the Kronecker 

symbol defined as 

 

For c), if we take G = (g1, g2, g3) we have 

flm3(G) = min(g1, g2)δg1,min(g1,g2)δg1,g2+δg2,min(g1,g2) 

min(g2, g3) (δg2,min(g2,g3)δg2,g3 + δg3,min(g2,g3)) . 

4 Definition of Our Pseudo Random-Integer 

Generator 

Instead of non-empty as before, here we need 

an infinite countable ordered set. And for 

simplicity we consider 𝔼 = ℕ since in any case 

𝔼 can always be assimilated to a subset of ℕ by 

bijection. Given N ≥ 2 integers k1, k2, . . . , kN for 

a random choice among them, we consider the 

set of states as an N-tuple of N consecutive 

prime gaps. If we denote by σ a translation of 

the starting point in the primes set based on the 

seeding, then the set of states can be defined 

as 

 

 

 

where n is a non negative integer. 

The update state function is defined as the next 

ordered N-tuple of the prime gap sequence 

starting at gm = flmN (Sn), n + 1≤m ≤n + N; that 

is, 

 

 

 

gm = flmN (Sn), gj = pσ(j+1) − pσ(j),0 ≤ j − m ≤ N − 1. Finally the output function is given by 
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where flmpos(Sn), returns the index position,

counted from the left, of the flmN output applied

to the tuple Sn. In fact, flmpos can be defined

as in (2), with the difference that the output is

the index of the output given by flm.

Remark: The seed impact is an important

aspect to highlight, because it tells us how σ is

chosen. Indeed, if for example, we have σ(j) = j

+ 4, then g1 = pσ(2) − pσ(1) = p6 − p5 = 13 − 11 =

2 and g2 = 17 − 13 = 4. In such a case, for N =

2, we obtain k1 as the first output. Thus

depending on the situation, one has to define a

proper σ from the seed. 

However, as the goodness of the algorithm also 

depends on the period, a question to answer is 

the one related to an estimation of the period. 

This of course relies on the prime number 

theorem which states the following 

Theorem 4.1 (Prime Number Theorem [2]). 

The number of primes less than a given integer 

n is 

 

 

 

Where ln denotes the natural logarithm. 

Therefore, given the maximal integer reachable 

by the working programming language or 

software, one can estimate the period of our 

PRNG algorithm using the prime number 

theorem. Having such an estimation, extremity 

(max and min) behavior has to be defined to 

make sure the algorithm continues; the need is 

to define the gap between the maximum prime 

and 2. 

Nevertheless, there are infinitely many primes, 

so as far as the system can go in the 

calculation of large prime numbers, as large as 

the period of the algorithm will be. But on the 

other hand, the apparent concern will be the 

speed that could reduce the largest possible 

period to the largest accessible in a short time. 

Remark: 

• If the twin primes conjecture is verified, then 

our algorithm will always be able to change 

the component choice in a state Sn, since 

twin primes give the smallest prime gap for 

high integers. 

• More generally, any unstable behavior of 

primes can be used in this way to try 

randomness imitation. The gap variation is 

just an example, since we cannot be sure of 

its increasing, decreasing or constant 

behavior. 

Next, we evaluate our algorithm. This may give 

us a probabilistic argument about the 

distribution of primes. 

5 Application and Tests 

For tests, we consider the two-labels case. This 

corresponds to Carole’s behavior in the P&C 

Game for the Prime level [7]. We are going to 

generate a sequence of sequence of {0, 1}′s 

following our pseudo random integer generator 

algorithm and make a test on independence 

and uniformity as explained in [10, chapter 3]. 

Let n, d be two large enough integers. We 

generate n d-tuples of {0, 1} by our algorithm 

and check uniformly distribution with the χ2-test. 

For application, we seed the generator with the 

sth prime number as the minimal prime of the 

initial gap, where s is taken randomly on a 

certain interval in the system used. For this 

purpose, simple codes to generate a csv test 

file, can be written in python 2.7 [11] as follows 

 

• random code: 

 

#BTrandom2.py file 

#By Bertrand Teguia 

#Random code for two labels (0,1) based on 
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prime numbers distribution 

 

from math import * 

import random 

 

def nextprime(p): 

if p > 2: 

value = p  

while True: 

i = 3 

value += 2 

q = int(floor(sqrt(value)))  

while i <= q and value % i: 

i += 2  

if i > q: 

break  

return value 

value = 3 if p==2 else 2  

return value 

 

def nthprime(n):  

cpt=1 

p=2 

while cpt<n: 

        p=nextprime(p) 

      cpt+=1 

return p 

 

def BTrandom2():  

global prime 

global gap 

prevprime = prime 

prime = nextprime(prime)  

prevgap = gap 

gap = prime - prevprime;  

if prevgap < gap: 

      return 0 

else: 

       return 1 

 

# seeding 

s = nthprime(random.randint(10000, 20000))  

prime = nextprime(s) 

gap = prime – s 

 

• csv file creator code: 

 

#BTrandom2_test.py file 

#By Bertrand Teguia 

#Random code csv generator of n d-tuple for 

BTrandom2 

 

from BTrandom2 import * 

 

import csv 

 

d = 100  

n = 100 

 

lines = [] 

for i in range(n): 

row = [] 

for j in range(d): 

row.append(BTrandom2()) 

 lines.append(row) 

with open(’BTrandom2_test.csv’, ’w’) as writeFile:  

writer = csv.writer(writeFile) 

        writer.writerows(lines) 

writeFile.close() 

 

Running the file BTrandom2_test.py in the 

same folder with BTrandom2.py produces a csv 

file named BTrandom2_test.csv. We can thus 

generate as many files as we want. 

5.1 Probability variation of the prime gap 

sequence 

Before going through the χ2-test, let us first give 

an estimation of the probability p that 1 appears. 

Thus we use the law of large numbers [12], so 

we consider the outcomes from our generator 

to be independent. As seen in our code, we 
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consider n = d = 100. The law of large number

tells us that an estimation of the expectation of

the distribution followed by our generator, which

is the expectation of distribution followed by the 

prime gap increasing behavior at any index, is 

the limit 

 

 

where xj, 1 ≤ j ≤ d denote the observations of 

the trial processes of a row in our generated 

csv files. After computations from csv files we 

realized that the expectation oscillates between 

0.48 and 0.57; and moreover, using again the 

law for the estimated expectations on each row 

gives us amazingly in all the cases the value 

0.52. Note that the second use of the law of 

large numbers adds the hypothesis that each 

row is taken independently, which is natural 

from the first independence hypothesis. 

Furthermore, due to the experience 

characteristics, one trivially sees that we are in 

the case of a Bernoulli scheme. Therefore, 

since the expectation of a Bernoulli experience 

is the winning probability we have our 

estimation; that is the probability that the prime 

gap sequence increases at any index is given 

by

 

 

or, rigorously, in the convenient probability 

space with the probability P, given any three 

consecutive prime numbers 

pn < pn+1 < pn+2, n ∈ ℕ, 

we have 

 

 

 

 

Figure 1: Occurrence of prime numbers 
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By the closure of the value obtained with 0.5

(uniformity), from this result one might say that

the variation of the prime gap sequence is

"random". So we may think at this stage that

our random integer generator produces a good

imitation of randomness. Note, however, that

talking about randomness for a sequence of

numbers is more for the unknowns or not-

computed values of that sequence when going

to infinity. Indeed, there is no randomness to

expect from value that we already have. A

picture of this result is given in Figure 1.

Notice that, using the χ2-test for individual

variation as we have just done will lead to the

same conclusion. In the next paragraph, we

give the result from the χ2− test on a different

view of the prime gap sequence.

5.2 χ2-test of independence

To check if the rows in our generated csv files

are uniformly distributed over {0,1}d, we choose

d = 4 and n = 10000. This tests the

independence to some extent, but it only tests if

d consecutive calls of our generator are

independent. Note, however, that the code

producing the csv file has to change, because

we prefer to count occurrences directly in

python. The new code looks as follows.

 

#BTrandom2_testX2.py file 

#By Bertrand Teguia 

#Random code csv generator for a X^2 test of 

BTrandom2 

 

from BTrandom2 import * 

 

import csv 

 

d = 2 

n = 20000 

 

lines = [] 

 

for i in range(n):  

row = [] 

for j in range(d):  

          row.append(BTrandom2()) 

lines.append(’’.join(map(str, row))) 

 

lines = map(lambda y: y.split(),list(set(map(lambda 

x:\  

           x+" "+str(lines.count(x)), lines)))) 

 

with open(’BTrandom2_testX2.csv’, ’w’) as 

writeFile:  

         writer = csv.writer(writeFile) 

         writer.writerows(lines) 

 

writeFile.close() 

 

Running this update python code lead us to the

following table 1, where Ei = npi, with

Denote the expectation of Oi : occurrence

number of the label i. oi is the observed value.

Remember that our null hypothesis is to have

uniform distribution

As we have 15 degrees of freedom, from the

χ2-distribution table, one sees that we are far

from uniformity, so we reject our null hypothesis.

Thus despite the random behavior observed

previously, the prime gap sequence appears to

not behave randomly when collection of its

consecutive variations is considered.

6 Conclusion

Terence Tao concluded "Individual primes are

believed to behave randomly, but the collective

behavior of the primes is believed to be quite

predictable" [2]. Here we have find out an

argument for sufficient progress towards

improving that statement; and rather say, we

can believe that individual consecutive primes

appear randomly, but taken as small groups,

the argument of randomness for primes is

rejected. Thus our random imitation from prime

numbers does not satisfy all the criteria used

for acknowledgment of pseudo-randomness
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reproduction. This give us an understanding of

the P&C Game [7], because as seen in the

previous section, a consecutive constant

behavior of the prime gap sequence variation

does not happen often. That means the

average displacement of a player during a

game play is less in general. 

For the study of the occurrence of primes, we 

think that a good recommendation for further 

understanding of their behavior is to consider 

them in small groups or better small groups of 

consecutive primes. 

 

Table 1: χ2-test of independence for four consecutive variations of the prime gap sequence 

 

 

In a further study, since the hypothesis of 

uniformity is not accepted for consecutive 

groups of the prime gap sequence, interesting 

results for classification of prime numbers can 

be obtained considering the irregularity of these 

groups. Thus, we may probably deduce 

mathematical formulas hidden behind certain 

probabilistic arguments on primes. 
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