COMPARATIVE ANALYSIS OF CONTROLLED HEALTHY AND MCI PATIENTS USING EEG STATISTICS


COMPARATIVE ANALYSIS OF CONTROLLED HEALTHY AND MCI PATIENTS USING EEG STATISTICS


PARAG PURANIK1, SANTOSH AGRAHARI2, ASHISH PANAT3

1Research Scholar, Department of Electrical and Electronics Engineering, Poornima University, Jaipur; 2Associate Professor, Department of Electrical and Electronics Engineering, Poornima University, Jaipur; 3Dean, Innovation and Incubation, SNDT Women’s University, Mumbai


This paper describes the statistical analysis of EEG signals. EEG examination is carried out and compared between controlled healthy and Mild cognitive impairment (MCI) patients which may further develop dementia or Alzheimer disease. The statistical techniques provide the comparative analysis of EEG signal. The correct evaluation of EEG provides the extraction of valuable information which is important clinically. Also, extracting significant features from EEG is an important task for classification between various patients. The analysis of EEG data provides correct frequency rhythms. The relative Power spectral density values by Auto Regressive-Burg process cleared that; associated with the control group, the relative PSD is improved in the theta rhythmic range while expressively reduced in the alpha-2 rhythmic range.


Keywords: EEG analysis, Mild cogbitive impairment (MCI), EEG statistics, Power spectral Density (PSD), coherence analysis


Full-text PDF


How to cite this article:
PARAG PURANIK, SANTOSH AGRAHARI, ASHISH PANAT. COMPARATIVE ANALYSIS OF CONTROLLED HEALTHY AND MCI PATIENTS USING EEG STATISTICS. American Journal of Engineering Research and Reviews, 2020, 3:21.


References:

1. Wang, R., Wang, J., Yu, H., Wei, X., Yang, C. and Deng, B. (2014), “Power spectral density and coherence analysis of Alzheimer’s EEG”, Cognitive Neurodynamics, Springer Journal 9(3), pp.291-304.
2. Asrul Adam Zuwairie Ibrahim Norrima Mokhtar, Mohd Ibrahim Shapiai, Paul Cumming, Marizan Mubin (2017), “Improving EEG signal peak detection using feature weight learning of a neural network with random weights for eye event-related applications.” Sadhana, Springer Journal, May 2017, Volume 42, Issue 5, pp 641–653
3. Zhu B, Chai C, Gao S, Ren H, Cao L, et al. (2017), “Analysis of EEG Complexity in Patients with Mild Cognitive Impairment” , J Neurol Disord 5: 354. doi:10.4172/2329-6895.1000354.4
4. Sonja Simpraga1, Ricardo Alvarez-Jimenez, Huibert D. Mansvelder, Joop M. A. van Gerven2, Geert Jan Groeneveld2,3, Simon-Shlomo Poil1,4 & Klaus Linkenkaer-Hansen, “EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease”, Scientific Reports | 7: 5775 | DOI:10.1038/s41598-017-06165-4.
5. Nesma Houmani1, Francois Vialatte, Esteve Gallego-Jutglà4, Ge´rard Dreyfus, Vi-Huong Nguyen-Michel, Jean Mariani, Kiyoka Kinugawa, “Diagnosis of Alzheimer’s disease with Electroencephalography in a differential framework”, PLOS ONE | https://doi.org/10.1371/journal.pone.0193607, pp.- 1-19, 2018.
6. Poil S-S, WillemdeHaan, WiesjeM.vanderFlier, HuibertD.Mansvelder, Philip Scheltens and KlausLinkenkaer-Hansen, “Integrative EEG biomarkers predict progression to Alzheimer’s disease at the MCIstage”, Frontiers in Aging Neuroscience, March 2014, Volume05, Article-58.
7. Fauzan N, Amran N.H, “Early Detection of Mild Cognitive Impairment, Dementia and Alzheimer’s Using Qeeg”, European Journal of Interdisciplinary studies, Sep-Dec 2015, Volume-3, Number-1, ISSN:2411-958X (Print).
8. Horvath A, Szucs A, Csukly G, “ EEG and ERP Biomarkers of Alzheimer’s Disease: A Critical Review”, Frontiers in Bioscience, Landmark 23, 183-220, January 2018.
9. Sturm I, Dähne S, Blankertz B, “Multi-Variate EEG Analysis as a Novel Tool to Examine Brain Responses to Naturalistic Music Stimuli”, PLOS ONE | DOI:10.1371/journal.pone.0141281 October 28, 2015.
10. Braboszcz C, B. Rael Cahn, Levy J, Fernandez M, Delorme A, “Increased Gamma Brainwave Amplitude Compared to Control in Three Different Meditation Traditions”, PLOS ONE | DOI:10.1371/journal.pone.0170647 January 24, 2017.
11. Banquet J P, Sailhan M, “Quantified EEG Spectral Analysis of sleep and Transcendental Meditation”, Second European Congress on Sleep Research, Rome, Italy, 10 April 1974.
12. Lomas, T., et al., A systematic review of the neurophysiology of mindfulness on EEG oscillations. Neurosci. Biobehav. Rev. (2015), http://dx.doi.org/10.1016/j.neubiorev.2015.09.018.
13. Ferreri F, SaraM, Fabrizio Vecchio, Giuseppe Curcio, and Fabio Ferrarelli, “Clinical Neurophysiology in Alzheimer’s Disease”, International Journal of Alzheimer’s Disease, Volume 2011, Article ID 134157, 2 pages doi:10.4061/2011/134157
14. Alexandra K, Aharon Satt, “Automatic speech analysis for the assessment of patients with predementia and Alzheimer’s disease”. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 1 (2015) 112–124.
15. Emanuel Neto, Elena A. Allen, Harald Aurlien, Helge Nordby and Tom Eichele, “EEG spectral features discriminate between Alzheimer’s and vascular dementia”, Frontiers in Neurology, February 2015 | Volume 6 | Article 25.
16. Doufesh H, Faisal T, Lim K, “EEG Spectral Analysis on Muslim Prayers”, Article in Applied Psychophysiology and Biofeedback · October 2011 DOI: 10.1007/s10484-011-9170-1 · Source: PubMed.
17. Diego Alfonso Rojas, Leonardo Andrés Góngora and Olga Lucia Ramos, “EEG Signal Analysis Related to Speech Process Through BCI EMOTIV, FFT and Statistical methods”, ARPN Journal of Engineering and Applied Sciences, VOL. 11, NO. 5, March 2016 ISSN 1819-6608.
18. Roberta Lizio, Fabrizio Vecchio, Giovanni B. Frisoni, Raffaele Ferri, Guido Rodriguez,5 and Claudio Babiloni6, International Journal of Alzheimer’s Disease Volume 2011, Article ID 927573, 11 pages doi:10.4061/2011/927573.
19. Alida A. Gouw1,2 and Cornelis J. Stam, “Electroencephalography in the Differential Diagnosis of Dementia”, Epileptologie 2016, pp.-173-186.
20. Amjed S. Al-Fhoum and Ausilah A. Al-Fraihat, “Methods of EEG Signal Features Extraction Using Linear Aalysis in Frequency and Time-Frequency Domains”, Hindawi Publishing Corporation ISRN Neuroscience Volume 2014, Article ID 730218
21. Anthoula Tsolaki, Dimitrios Kazis, Ioannis Kompatsiaris, “Electroencephalogram and Alzheimer’s Disease: Clinical and Research Approaches”, Hindawi Publishing Corporation International Journal of Alzheimer’s Disease”, Volume 2014, Article ID 349249
22. Davide V. Moretti, “Neurophysiology in Alzheimer’s Disease and Dementia”, EDITORIAL published: 27June2016, Frontiers in Aging Neuroscience.
23. Gregg D. Jacobs, Richard Friedman, “EEG Spectral Analysis of Relaxation Techniques”, Applied Psychophysiology and Biofeedback, Vol. 29, No. 4, December 2004.
24. G.Fiscon, E.Weitschek, P.Bertolazzi, G.Felici, S.De Salvo, P.Bramanti, MC.De Cola, “Alzheimer’s disease patients classification through EEG signals processing”, The IEEE SSCI 2014, Orlando, Florida 9–12 December, 2014.
25. Laura Bonanni, Astrid Thomas, PietroTiraboschi, Bernardo Perfetti, “EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up”, Brain Journal (2008), 131, 690-705
26. Noor Kamal Al-Qazzaz,Sawal Hamid BinMD. Ali, Siti Anom Ahmad, “Role of EEG as Biomarker in the Early Detection and Classification of Dementia”, Hindawi Publishing Corporation, Scientific World Journal, Volume 2014, Article ID 906038, pp.1-16, December 2014.
27. Prof. Shamla Mantri,Vipul Patil, Rachana Mitkar, “ EEG Based Emotional Distress Analysis – A Survey”, International Journal of Engineering Research and Development e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 4, Issue 6 (October 2012), PP. 24-28.
28. Roberta Lizio, Fabrizio Vecchio, Giovanni B. Frisoni, Raffaele Ferri, “Electroencephalographic Rhythms in Alzheimer’s Disease”, SAGE-Hindawi Access to Research, International Journal of Alzheimer’s Disease, Volume 2011, Article ID 927573, pp.-29-40.
29. Ssang-Hee Seo and Jung-Tae Lee, “Stress and EEG”, Convergence and Hybrid Information Technologies, Book edited by: Marius Crisan, ISBN 978-953-307-068-1, pp. 426, March 2010, INTECH, Croatia
30. Vanitha V, Krishnan P, “Real time stress detection system based on EEG signals”, Biomedical Research 2016; Special Issue: S271-S275.
31. Punnet Mongia, R.K. Sharma“Estimation and Statistical Analysis of Human VoiceParameters to Investigate the Influence of Psychological Stress and to Determine the VocalTract Transfer Function of an Individual”, Journal of Computer Networks and Communications, vol. 2014, pp.-1-18.
32. S-E.Fotinea, S.Bakamidis, T.Athanaselis, I.Dologlou, “Emotion in Speech: towards anintegration of linguistic, paralinguistic and psychological analysis, Proceedings of IEEE 2013.