Enhancing the liquid phase exfoliation of graphite in both aqueous and organic mixtures

Enhancing the liquid phase exfoliation of graphite in both aqueous and organic mixtures

a,* M.P. Lavin-Lopez, a J.L. Valverde, a L.M. Dominguez-Delgado, a L. Sanchez-Silva and a A. Romero

a Department of Chemical Engineering, University of Castilla-La Mancha, Avenida Camilo José Cela 12, Ciudad Real, Spain, 13071

International Research Journal of Materials Sciences and Applications

Two different solvent mixtures, aqueous and organic, were used in the graphite liquid phase exfoliation. These solvent mixtures were selected through a detailed study of Hansen Solubility Parameters. Different operational sonication parameters (sonication temperature, cycle, amplitude and time) were studied in order to analyze their influence over the exfoliation process. Exfoliated graphite obtained after different sonication conditions were further characterized by RAMAN spectroscopy and thermogravimetric techniques. Obtained results showed that, among all the studied sonication parameters, time is the most important one due to its influence over characteristics of the final exfoliated product. Thus, it was evidenced the defect formation at higher sonication times, being dominant the growth of bulk defects in the structure of exfoliated samples at sonication times superior to 5 hours. As consequence, a careful tuning of the sonication parameters is necessary in order to obtain exfoliated samples with low disorder.

Keywords: Graphite, exfoliation, Hansen Solubility Parameters, aqueous solvents, organic solvent

Free Full-text PDF

How to cite this article:
M.P. Lavin-Lopez et al., ENHANCING THE LIQUID PHASE EXFOLIATION OF GRAPHITE IN BOTH AQUEOUS AND ORGANIC MIXTURES.. International Research Journal of Materials Sciences and Applications, 2017; 1:5. DOI:10.28933/ijmsa-2017-06-0901


1. A. K. Geim, K. S. Novoselov, Nat. Mater. 6, 183 (2007).
2. M. P. Lavin-Lopez, J. L. Valverde, L. Sanchez-Silva, A. Romero, Ind. Eng. Chem. Res. 55, 845 (2016).
3. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, Nature nanotechnology. 3, 563 (2008).
4. M. Lotya, Y. Hernandez, P. J. King, R. J. Smith, V. Nicolosi, L. S. Karlsson, F. M. Blighe, S. De, W. Zhiming, I. T. McGovern, G. S. Duesberg, J. N. Coleman, J. Am. Chem. Soc. 131, 3611 (2009).
5. R. S. Edwards, K. S. Coleman, Nanoscale. 5, 38 (2013); J. Xu, D. K. Dang, V. T. Tran, X. Liu, J. S. Chung, S. H. Hur, W. M. Choi, E. J. Kim, P. A. Kohl, J. Colloid Interface Sci. 418, 37 (2014).
6. J. L. V. M.P. Lavin-Lopez, L. Sanchez-Silva and A. Romero Industrial&Engineering Chemistry Research. 55, 845 (2016).
7. A. Ciesielski, P. Samorì, Chemical Society Reviews. 43, 381 (2014).
8. C. Yeon, S. J. Yun, K. S. Lee, J. W. Lim, Carbon. 83, 136 (2015).
9. M. M. Hossain, O. K. Park, J. R. Hahn, B. C. Ku, Mater. Lett. 123, 90 (2014).
10. L. Zhu, X. Zhao, Y. Li, X. Yu, C. Li, Q. Zhang, Mater. Chem. Phys. 137, 984 (2013).
11. M. Yi, Z. Shen, S. Ma, X. Zhang, J. Nanopart. Res. 14, (2012).
12. W. Du, X. Jiang, L. Zhu, J. Mater. Chem. A. 1, 10592 (2013).
13. P. M. Carrasco, S. Montes, I. García, M. Borghei, H. Jiang, I. Odriozola, G. Cabañero, V. Ruiz, Carbon. 70, 157 (2014).
14. A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Steriotis, A. K. Stubos, C. Trapalis, Solid State Commun. 149, 2172 (2009); S. Vadukumpully, J. Paul, S. Valiyaveettil, Carbon. 47, 3288 (2009); M. Lotya, P. J. King, U. Khan, S. De, J. N. Coleman, ACS Nano. 4, 3155 (2010); L. Guardia, M. J. Fernández-Merino, J. I. Paredes, P. Solís-Fernández, S. Villar-Rodil, A. Martínez-Alonso, J. M. D. Tascón, Carbon. 49, 1653 (2011).
15. U. Khan, A. O’Neill, M. Lotya, S. De, J. N. Coleman, Small. 6, 864 (2010).
16. A. B. Bourlinos, V. Georgakilas, R. Zboril, T. A. Sterioti, A. K. Stubos, Small. 5, 1841 (2009).
17. S. A. C. M. Hansen, Hansen Solubility Parameters in Practice. Hansen-Solubility; C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, Second Edition. CRC Press: 2007.
18. M. Yi, Z. Shen, X. Zhang, S. Ma, J. Phys. D: Appl. Phys. 46, (2013).
19. J. S. Y. Chia, M. T. T. Tan, P. S. Khiew, J. K. Chin, H. Lee, D. C. S. Bien, C. W. Siong, Chem. Eng. J. 249, 270 (2014).
20. V. Alzari, V. Sanna, S. Biccai, T. Caruso, A. Politano, N. Scaramuzza, M. Sechi, D. Nuvoli, R. Sanna, A. Mariani, Composites Part B: Engineering. 60, 29 (2014).
21. D. Tasis, K. Papagelis, P. Spiliopoulos, C. Galiotis, Mater. Lett. 94, 47 (2013).
22. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, R. Car, Nano Lett. 8, 36 (2008); A. Kaniyoor, S. Ramaprabhu, AIP Adv. 2, (2012).
23. B. Puangbuppha, P. Limsuwan, P. Asanithi In Non-chemically functionalized graphene exfoliated from graphite in water using ultrasonic treatment, 3rd International Science, Social Science, Engineering and Energy Conference 2011, I-SEEC 2011, Nakhon Pathom, Nakhon Pathom, 2012; pp 1094; J. Xu, Dang, D. K., Tran, V. T., Liu, X., Chung, J. S., Hur, S. H., Choi, W. M., Kim, E. J. y Kohl, P. A., Journal of Colloid and Interface Science. 418, 37 (2014); M. M. Hossain, Park, O. K., Hahn, J. R. y Ku, B. C., Materials Letters. 123, 90 (2014).
24. P. M. Carrasco, Montes, S., García, I., Borghei, M., Jiang, H., Odriozola, I., Cabañero, G. y Ruiz, V., Carbon. 70, 157 (2014).
25. A. C. Ferrari, Solid State Commun. 143, 47 (2007).
26. M. Noroozi, A. Zakaria, S. Radiman, Z. A. Wahab, PLoS ONE. 11, (2016).
27. R. J. Nemanich, S. A. Solin, Physical Review B. 20, 392 (1979).
28. Z.-S. W. Khaled Parvez, Rongjin Li, Xianjie Liu, Robert Graf, Xinliang Feng, Klaus Müllen, Journal of American Chemical Society. 136, 6083 (2014).
29. Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu, W. Chen, A. T. S. Wee, J. Phys. Chem. C. 112, 10637 (2008).
30. L. M. Viculis, J. J. Mack, O. M. Mayer, H. T. Hahn, R. B. Kaner, J. Mater. Chem. 15, 974 (2005); W. Fu, J. Kiggans, S. H. Overbury, V. Schwartz, C. Liang, Chem. Commun. 47, 5265 (2011).
31. P. M. Carrasco, S. Montes, I. García, M. Borghei, H. Jiang, I. Odriozola, G. Cabañero, V. Ruiz, Carbon. 70, 157 (2014).
32. A. V. Alaferdov, Gholamipour-Shirazi, A., Canesqui, M. A., Danilov, Y. A. and Moshkalev, S. A., Carbon. 69, 525 (2014).
33. F. Hennrich, R. Krupke, K. Arnold, J. A. R. Stütz, S. Lebedkin, T. Koch, T. Schimmel, M. M. Kappes, J. Phys. Chem. B. 111, 1932 (2007).
34. M. V. Bracamonte, G. I. Lacconi, S. E. Urreta, L. E. F. Foa Torres, The Journal of Physical Chemistry C. 118, 15455 (2014).

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)

CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.