Metallurgical Perspective of AISI 301LN (EN 1.4318) Grade Austenitic Stainless Steel for Future Transport Applications


Metallurgical Perspective of AISI 301LN (EN 1.4318) Grade Austenitic Stainless Steel for Future Transport Applications


Debasish Chatterjee

Adjunct Assistant Professor Practice, Department of Metallurgy and Materials Engineering, VNIT Nagpur, India


International Research Journal of Materials Sciences and Applications

Recently AISI 301LN grade austenitic stainless steel shows potential applications in manufacturing metro coach, oil tankers, bus body structures and wheels etc. Extensive strain induced martensite (SIM) formation property at crack tip of this steel helps toreduce frequent failure of this material. Formation of hard phase ‘SIM’ at crack tip delay crack propagation during fracture. In this way this type of steel promotes to make safe structural components. To fulfill European commission target before the year 2030, several attempts are going to enhance the mechanical performance of this particular steel by applyingadvanced thermomechanical treatments.In this regard only cold rolling and annealing treatments were used extensively in pastto make nano/ultra-fine grain structure, so that better structural properties can be achieved. It was found that, best mechanical properties (830 MPa Y.S., 953 MPa U.T.S., 36% elongation) were achieved after 80% cold rolling of this steel at ice-water mixture and annealing at 7000C for 20 minutes due to formation of ultra-fine grain (~0.74µm) structure. So in this review article all its thermomechanical properties are explored to find a scope towards further enhancement of its mechanical properties by advanced thermomechanicaltreatment to make safe body white structure of a vehicle.


Keywords: Strain Induced Martensite (SIM), Austenite, Lath and Dislocation Cell Martensite, Twin, Nano-Grains, Rail Coach.

Free Full-text PDF


How to cite this article:
Debasish Chatterjee. Metallurgical Perspective of AISI 301LN (EN 1.4318) Grade Austenitic Stainless Steel for Future Transport Applications. International Research Journal of Materials Sciences and Applications, 2020 3:9.


References:

[1] Handbook of stainless steel, Outokumpu Stain-less AB, Avesta Research Centre, SE-774 22 Avesta, Sweden, 8-89, (2013).
[2] Joseph Ki Leuk Lai, Kin Ho Lo, Chan Hung Shek, Stainless Steels: An Introduction and Their Recent Developments, Bentham Science Publishers, 1-168, (2012).
[3] WladyslawJaxa-Rozen,Cold-worked austenitic stainless steels in passenger railcars and in other applications, Thin-Walled Structures, 83, 190–199, (2014).
[4] Book: Advances in Stainless Steels, Edited by Baldev Raj, Chapter-13, High Strength Stainless Steels – Temper Rolled, A Kyrolainen, University Press, Hyderabad, India, March, 163-176, (2010).
[5] www.worldstainless.org,Railcars in Stainless SteelA Sustainable Solution for Sustainable Public Transport, International Stainless Steel Forum, Brus-sels, Belgium, 1-9, (2010) [Access – 14th January 2017].
[6] European Commission Technical Report,Stainless Steels in Bus Construction, A Kyrolainen, R. Sanchez, P.-O. Santacreu, V. Picozzi, A. Gales, Lux-embourg, 1- 225, (2004).
[7] Antero Kyro¨ la¨inen, MarttiVilpas, Han-nuHa¨nninen, Use of Stainless Steels in Bus Coach Structures, Journal of Materials Engineering and Per-formance, ASM International, 9 (6), 669-677, (2000).
[8] A SahaPodder, A Bhanja, Applications of Stain-less Steel in Automobile Industry, Advanced Materi-als Research, Trans Tech Publications, Switzerland, 794, 731-740, (2013).
[9] European Commission Technical Report, Devel-opment of Light Weight Trains and Metro Cars by Using Ultra High Strength Stainless Steels , A Gales, M. Siren, J. Saynajakangas, N. Akdut, D. Hoecke, R. Sanchez, Luxembourg, 1-265, (2007).
[10] N.R. Baddoo, Stainless steel in construction: A review of research, applications, challenges and op-portunities, Journal of Constructional Steel Re-search, 64, 1199-1206, (2008).
[11] K.H. Lo, C.H. Shek, J.K.L. Lai, Recent develop-ments in stainless steels, Materials Science and En-gineering R, 65, 39–104, (2009).
[12] Michael McGuire, Stainless Steels for Design Engineers, ASM International, 69-90, (2008).
[13] Book: Advanced Steels – The Recent Scenario in Steel Science and Technology, Edited by YuqingWeng, Han Dong, Yong Gan, Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press, 1-500, (2011).
[14] Huang Jun-xia, Ye Xiao-ning, Xu Zhou, Effect of Cold Rolling on Microstructure and Mechanical Properties ofAISI 301LN Metastable Austenitic Stain-less Steels, Journal of Iron and Steel Research, In-ternational,19(10), 59-63, (2012).
[15] Paulo Maria de O. Silva, Hamilton Ferreira G. de Abreu, Victor Hugo C. de Albuquerque,Pedro de Li-ma Neto, Joao Manuel R.S. Tavares, Cold defor-mation effect on the microstructures and mechanical propertiesof AISI 301LN and 316L stainless steels, Materials and Design, 32, 605–614, (2011).
[16] Philipp Seemann, SabineKurz, PaulGümpel, Mar-tensite formation in a new manganese alloyed meta-stable austenitic steel (AISI 200-series), Journal of Alloys and Compounds, 577S, S649–S653, (2013).
[17] J. Talonen, H. Ha¨nninen, Formation of Shear Bands and Strain-Induced Martensite During Plastic Deformation of Metastable Austenitic Stainless Steels, ActaMaterialia, 55, 6108–6118, (2007).
[18] J.J. Roa , G.Fargas , A.Mateo , E.Jiménez-Piqué, Dependence of nanoindentation hardness with crystallographic orientation of austenite grains in metastable stainless steels, Materials Sci-ence&EngineeringA, 645,188–195, (2015).
[19] J.J. Roa , J.M.Wheeler , T.Trifonov, G.Fargas , A.Mateo , J.Michler , E. Jiménez-Piqué, Deformation of polycrystalline TRIP stainless steel micropillars, Materials Science&EngineeringA, 647, 51–57, (2015).
[20] S.S.M. Tavares, J.M. Neto, M.R. da Silva, I.F. Vasconcelos, H.F.G. de Abreu, Magnetic properties and α/-martensite quantification in anAISI 301LN stainless steel deformed by cold rolling, Materials Characterization, 59, 901 – 904, (2008).
[21] Allison M. Beese, Dirk Mohr, Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Ac-taMaterialia, 59, 2589–2600, (2011).
[22] Jiri Man, Ivo Kubena, MarekSmaga, Ondrej Man, AnttiJarvenpaa, Anja Weidner, ZdenekChlup, Jaro-slavPolak, Microstructural Changes During Defor-mation of AISI 300 Grade Austenitic Stainless Steels: Impact of Chemical Heterogeneity, 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy, Procedia Structural Integrity, 2, 2299-2306, (2016).
[23] JuhoTalonen, PerttiNenonen, GersomPape, HannuHänninen, Effect of Strain Rate on the Strain-Induced γ–α/MartensiteTransformation and Mechani-cal Properties of AusteniticStainless Steels, Metal-lurgical and Materials Transactions A, 36A, 421-432, (2005).
[24] LievenBracke, Geert Mertens, Jan Penning, Bru-no C. De Cooman,Martin Liebeherr, NuriAkdut, Influ-ence of Phase Transformations on the Mechani-calProperties of High-Strength Austenitic Fe-Mn-Cr Steel, Metallurgical and Materials Transactions A, 37A, 307-317, (2006).
[25] JuhoTalonen, HannuHänninen, Damping Proper-ties of Austenitic Stainless Steels Containing Strain-Induced Martensite, Metallurgical and Materials Transactions A, 35A, 2401 – 2406, (2004).
[26] SuviPapula, JuhoTalonen, HannuHa¨nninen, Ef-fect of Residual Stress and Strain-Induced α/-Martensiteon Delayed Cracking of Metastable Aus-tenitic Stainless Steels, Metallurgical and Materials Transactions A, 45A, 1238 – 1246, (2014).
[27] MattiIsakov, Stefan Hiermaier,Veli-tapaniKuokkala, Effect of Strain Rate on the Marten-sitic Transformation During Plastic Deformation of an Austenitic Stainless Steel, Metallurgical and Mate-rials Transactions A, 46A, 2352 – 2355, (2015).
[28] Yamato Mishiro, ShoichiNambu, Junya Inoue, Toshihiko Koseki, Effect of Stress on Variant Selec-tion in Lath Martensite inLow-carbon Steel, ISIJ Inter-national, 53(8), 1453–1461, (2013).
[29] S. C. Sun, J. W. Mu, Z. H. Jiang, C. T. Ji, J. S. Lian, Q. Jiang, Effect of cold rolling on tensile prop-erties and microstructure of high nitrogen alloyed austenitic steel, Materials Science and Technology, 30(2), 146-151, (2014).
[30] T. Juuti, L.P. Karjalainen, R. Ruoppa, T. Taula-vuori, Static Strain Ageing In Some Austenitic Stain-less Steels, Materials Science Forum, Trans Tech Publications, Switzerland, 638-642, 3278-3283, (2010).
[31] S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, A. Kyro¨la¨inen, Hall–Petch Behavior in Ultra-Fine-Grained AISI 301LNStainless Steel, Metallurgical and Materials Transactions A, 38A, 1202 – 1210, (2007).
[32] S. Rajasekhara, L.P. Karjalainen, A. Kyröläinen, P.J. Ferreira, Microstructure evolution in nano/submicron grained AISI 301LN stainless steel, Materials Science and Engineering A, 527, 1986–1996, (2010).
[33] Angelo Fernando Padilha, Ronald Lesley Plaut and Paulo Rangel Rios, Annealing of Cold-worked Austenitic Stainless Steels, ISIJ International, 43(2), 135–143, (2003).
[34] Angeline Poulon-Quintin, StéphanieBrochet, Jean-Bernard Vogt,Jean-Christophe Glez, Jean-Denis Mithieux, Fine Grained Austenitic Stainless Steels: The Role of Strain Induced α/-Martensite and the Re-version Mechanism Limitations, ISIJ International, 49(2), 293–301, (2009).
[35] M.C. Somani, P. Juntunen, L.P. Karjalainen, R.D.K. Misra, A. Kyro¨la¨inen, Enhanced Mechanical Properties through Reversionin Metastable Austenitic Stainless Steels, Metallurgical and Materials Transac-tions A, 40A, 729 – 744, (2009).
[36] R.D.K. Misra, B. Ravi Kumar,M. Somani, P. Kar-jalainen, Deformation processes during tensile strain-ing ofultrafine/nanograined structures formed by re-version inmetastable austenitic steels, ScriptaMateri-alia, 59, 79–82, (2008).
[37] R.D.K. Misra, Z. Zhang, Z. Jia , P.K.C. Venka-tsurya, M.C. Somani, L.P. Karjalainen, Nano-scale deformation experiments on the strain rate sensitivity of phasereversion induced nano-grained/ultrafine-grained austenitic stainless steels and comparison with the coarse-grained counterpart, Materials Sci-ence and Engineering A, 548, 161– 174, (2012).
[38] R.D.K. MISRA, P.K.C. VENKATSURYA, M.C. SOMANI, L.P. KARJALAINEN, Nano-scale Defor-mation Behavior of Phase-Reversion Induced Aus-tenitic Stainless Steels: The Interplay Between Grain Size from Nano-Grain Regime to Coarse-Grain Re-gime, Metallurgical and Materials Transactions A, 43A, 5286 – 5297, (2012).
[39] R.D.K. Misra,V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, L.P. Karjalainen, Interplay between grain structure, deformation mechanisms and austenitestability in phase-reversion-induced nano-grained/ultrafine-grained austeniticferrous alloy, ActaMaterialia, 84, 339–348, (2015).
[40] S. Srikanth, P. Saravanan1, Vinod Kumar, D. Saravanan, L. Sivakumar, S. Sisodia, K. Ravi, B. K. Jha, Property Enhancement in Metastable 301LN Austenitic Stainless Steel through Strain-Induced Martensitic Transformation and its Reversion (SIMTR) for Metro Coach Manufacture, International Journal of Metallurgical Engineering, 2(2), 203-213, (2013).
[41] S. Srikanth, P. Saravanan, D. Saravanan, S. Sisodia, K. Ravi, A. Bandyopadhyay, Improvement in Properties of 301LN Austenitic Stainless Steel for Metro Coach Manufacture, Advanced Materials Re-search, Trans Tech Publications, Switzerland, 794, 201-213, (2013).
[42] Alice Chlupová, Jirí Man, JaroslavPolák, L. PenttiKarjalainen, Microstructural Investigation and Mechanical Testing of an Ultrafine-Grained Austenitic Stainless Steel, Nano Conference, Brono, Czez Re-public, 1-6, (16-18 October 2013).
[43] D.L. Johannsen, A. Kyrolainen,P.J. Ferreira, In-fluence of Annealing Treatment on the Formationof Nano/Submicron Grain Size AISI 301 AusteniticStain-less Steels, Metallurgical and Materials Transactions A, 37A, 2325 – 2338, (2006).
[44] M.C. Somani, L.P. Karjalainen, A. Kyröläinen, T. Taulavuori, Processing of Submicron Grained Micro-structures andEnhanced Mechanical Properties by Cold-Rolling andReversion Annealing of Metastable Austenitic StainlessSteels, Materials Science Forum, Trans Tech Publications, Switzerland, 539-543,4875-4880, (2007).
[45] A Mateo , A Zapata , G Fargas, Improvement of mechanical properties on metastable stainless steels by reversion heat treatments, 7th EEIGM International Conference on Advanced Materials Research, IOP Publishing, IOP Conf. Series: Materials Science and Engineering, 48, 1-6, (2013).
[46] G. Meric de Bellefon , J.C. van Duysen, Tailor-ing plasticity of austenitic stainless steels for nuclear applications: Review of mechanisms controlling plasticity of austenitic steels below 4000 C, Journal of Nuclear Materials, 475, 168–191, (2016).
[47] R.D.K. Misra, S. Nayak, S.A. Mali, J.S. Shah, M.C. Somani, L.P. Karjalainen, On the Significance of Nature of Strain-Induced Martensite on PhaseRe-version-Induced Nano-grained/Ultrafine-Grained Aus-tenitic Stainless Steel, Metallurgical and Materials Transactions A, 41A, 3–12, (2010).
[48] J. X. Huang, X. N. Ye, J. Q. Gu, Z. Xu, Effect of thermomechanical treatment onmicrostructure and mechanical properties ofAISI 301LN stainless steel, Ironmaking and Steelmaking, 39 (8), 568 – 573, (2012).
[49] Junxia Huang, Xiaoning Ye, JiaqingGu, Xu Chen, Zhou Xu, Enhanced mechanical properties of type AISI301LN austenitic stainless steel through ad-vanced thermo mechanical process, Materials Sci-ence and Engineering A,532, 190– 195, (2012).
[50] B. Ravi Kumar, Sailaja Sharma, B.P. Kashyap, N. Prabhu, Ultrafine grained microstructure tailoring in austenitic stainless steel for enhanced plasticity, Materials and Design, 68, 63–71, (2015).
[51] Yunqing Ma, Jae-Eun Jin, Young-Kook Lee, A repetitive thermomechanical process to pro-ducenano-crystalline in a metastable austenitic steel, ScriptaMaterialia, 52, 1311–1315, (2005).
[52] A. Momeni, S.M. Abbasi, Repetitive Thermome-chanical Processing towards Ultra Fine Grain Struc-ture in 301, 304 and 304L Stainless Steels, Journal of Materials Science and Technology, 27(4),338-343, (2011).
[53] Phd Thesis: David Marechal, Linkage between mechanicalproperties and phase transformationin a 301LN austenitic stainless steel, Faculty of Graduate Study – Materials Engineering, The University of Brit-ish Colombia, (January 2011).
[54] AnttiJärvenpää, MatiasJaskari, L. PenttiKar-jalainen, MikkoHietala, Enhancing mechanical proper-ties and formability of AISI 301LN stainless steel sheet by local laser heat treatment, Key Engineering Materials, Trans Tech Publications, Switzerland, 554-557,885–892, (2013).
[55] A. Järvenpää, M. Jaskari, M. Hietala, K. Mäntyjärvi, Local Reversion of Cold Formed AISI 301LN, 15th Nordic Laser Materials Processing Con-ference, Nolamp 15, 25-27 August 2015,Lappeenranta, Finland, PhysicsProcedia, 78 , 305 – 311, (2015).
[56] A.S. Hamada , A. Järvenpää , E. Ahmed, P. Sa-hu , A.I.Z. Farahat, Enhancement in grain-structure and mechanical properties of laser reversion treated metastable austenitic stainless steel, Materials and Design, 94, 345–352, (2016).
[57] J.J. Roa , G.Fargas , E.Jiménez-Piqué , A.Mateo, Deformation mechanisms induced under high cycle fatigue tests in a metastable austenitic stainless steel, MaterialsScience&EngineeringA, 597, 232–236, (2014).
[58] D.F. Martelo , A. Mateo , M.D. Chapetti, Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel, International Journal of Fatigue, 77, 64–77, (2015).
[59] D. F. Martelo, M. D. Chapetti, Analysis of the importance of the crack closure in the driving forcefor the fatigue crack growth in metastable aus-tenitic stainless steels, International Congress of Science and Technology of Metallurgy and Materials, SAM –CONAMET 2014, Procedia Materials Science, 9, 387 – 395, (2015).
[60] D.F. Martelo, A.M. Mateo , M.D. Chapetti, Fa-tigue crack growth of a metastable austenitic stain-less steel, International Journal of Fatigue, 80, 406–416, (2015).
[61] A.S. Hamada, L.P. Karjalainen, J. Puustinen, Fa-tigue behavior of high-Mn TWIP steels, Materials Science and Engineering A, 517, 68–77, (2009).
[62] A.S. Hamada, L.P. Karjalainen, High-cycle fa-tigue behavior of ultrafine-grained austenitic stain-less and TWIP steels, Materials Science and Engi-neering A, 527, 5715–5722, (2010).
[63] A.S. Hamada, L.P. Karjalainen, P.K.C. Venkata Surya, R.D.K. Misra, Fatigue behavior of ultrafine-grained and coarse-grained Cr–Ni austeniticstainless steels, Materials Science and Engineering A, 528, 3890–3896, (2011).
[64] Alice Chlupová, Jirí Man, Ivo Kubena, Jaroslav-Polák, L. PenttiKarjalainen, LCF behaviour of ul-trafine grained 301LN stainless steel, XVII Interna-tional Colloquium on Mechanical Fatigue of Metals (ICMFM17), Procedia Engineering, 74, 147 – 150, (2014).
[65] G. Fargas , J.J.Roa , A.Mateo, Effect of shot peening on metastable austenitic stainless steels, Materials Science&EngineeringA, 641, 290–296, (2015).
[66] Arpan Das, SoumitraTarafder, Experimental in-vestigation on martensitic transformation and frac-ture morphologies of austenitic stainless steel, Inter-national Journal of Plasticity, 25, 2222–2247, (2009).
[67] Arpan Das, S. Sivaprasad, P.C. Chakraborti, S. Tarafder, Correspondence of fracture surface fea-tures with mechanical properties in 304LN stainless steel, Materials Science and Engineering A, 496, 98–105, (2008).
[68] R.K. Gupta , N. Birbilis, The influence of nano-crystalline structure and processing route on corro-sion of stainless steel: A review, Corrosion Science, 92, 1–15, (2015).
[69] LvJinlong, LuoHongyun, Comparison of corro-sion properties of passive films formed on phase reversion induced nano/ultrafine-grained 321 stain-less steel, Applied Surface Science, 280, 124–131, (2013).
[70] A.S. Hamada, L.P. Karjalainen , M.C. Somani, Electrochemical corrosion behaviour of a novel submicron-grainedaustenitic stainless steel in an acidic NaCl solution, Materials Science and Engi-neering A, 431, 211–217, (2006).
[71] S. Ningshen , U. KamachiMudali, Pitting and In-tergranular Corrosion Resistance of AISI Type 301LN Stainless Steels, Journal of Materials Engineering and Performance, 19(2), 274-281, (2010).
[72] Hamilton Ferreira Gomes de Abreu, Sheyla San-tana de Carvalho,Pedro de Lima Neto, Ricardo Pires dos Santos, VálderNogueiraFreire, Paulo Maria de Oliveira Silva, SérgioSoutoMaiorTavaresc Defor-mation Induced Martensite in an AISI 301LN Stainless Steel: Characterization and Influence on Pitting Cor-rosion Resistance, Materials Research, 10(4), 359-366, (2007).
[73] Hwigeon Kim, Jinwoo Lee, FrédéricBarlat, Daeyong Kim, Myoung-Gyu Lee, Experiment and modeling to investigate the effect of stress state, strainand temperature on martensitic phase trans-formation in TRIP-assistedsteel, ActaMaterialia, 97, 435–444, (2015).
[74] Dirk Mohr, Johan Jacquemin, Large deformation of anisotropic austenitic stainless steel sheets at room temperature: Multi-axial experiments andphe-nomenological modeling, Journal of the Mechanics and Physics of Solids, 56, 2935–2956, (2008).
[75] Allison M.Beese, Dirk Mohr, Anisotropic plastici-ty model coupled with Lode angle dependent strain-induced transformation kinetics law, Journal of the Mechanics and Physics of Solids, 60, 1922–1940, (2012).
[76] M. Isakov, M. May, S. Hiermaier, V.-T. Kuokkala, Amodel for the strain rate dependent plasticity of ametastable austenitic stainless steel, Materials and Design, 106, 258–272, (2016).
[77] David Mare´ Chal, Chad W. Sinclair, Philippe Dufour, Pascal J. Jacques, Jean-DenisMithieux, In-Situ Measurements of Load Partitioning in a Meta-stable Austenitic Stainless Steel: Neutron and Mag-netomechanical Measurements, Metallurgical and Materials Transactions A, 43A, 4601–4609, (2012).
[78] S. Rajasekhara, P.J. Ferreira, Martensite – aus-tenite phase transformation kinetics in an ultrafine-grained metastable austenitic stainless steel, Ac-taMaterialia, 59 , 738–748, (2011).