Synthesis of Diazine-Based Dendrimer Supported Pd/Co Bimetallic Nanoparticles and Catalytic Activity for Sonogashira Coupling Reactions

Synthesis of Diazine-Based Dendrimer Supported Pd/Co Bimetallic Nanoparticles and Catalytic Activity for Sonogashira Coupling Reactions

Md. Sayedul Islam* and Md. Wahab Khan

Department of Chemistry, Faculty of Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1000, Bangladesh

International Journal of nanoparticle research

A moisture-stable diazine-based dendrimer assisted heterogeneous bimetallic Pd/Co nanoparticles (NPs)  was synthesized which showed a simple, profitable and environmentally sustainable operation for the Sonogashira reactions under copper and solvent-free conditions with regained easily and recycled four times without substantial activity loss. Furthermore, the dendrimer was analyzed by IR, 1H NMR, 13C NMR, and elemental analysis whereas the Pd/Co bimetallic NPs was characterized by EDX, TGA & DSC, and XRD techniques.

Keywords: Bimetallic nanoparticles (NPs), Diazines; Dendrimer and Sonogashira reaction.

Free Full-text PDF

How to cite this article:
Md. Sayedul Islam, Md. Wahab Khan. Synthesis of Diazine-Based Dendrimer Supported Pd/Co Bimetallic Nanoparticles and Catalytic Activity for Sonogashira coupling Reactions. International Journal of Nanoparticle Research, 2019; 2:10. DOI: 10.28933/ijonr-2019-05-2505

1. Wang D, Li Y. Bimetallic nanocrystals: liquid‐phase synthesis and catalytic applications. Adv Mater (2011); 23(9):1044-60.
2. Jiang HL, Xu Q. Recent progress in synergistic catalysis over heterometallic nanoparticles. J Mater Chem. (2011); 21(36):13705-25.
3. Hansgen DA, Vlachos DG, Chen JG. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat Chem (2010); 2(6):484.
4. Ji X, Lee KT, Holden R, Zhang L, Zhang J, Botton GA, Couillard M, Nazar LF. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nat Chem (2010); 2(4):286.
5. Kobayashi H, Yamauchi M, Kitagawa H, Kubota Y, Kato K, Takata M. Atomic-level Pd− Pt alloying and largely enhanced hydrogen-storage capacity in bimetallic nanoparticles reconstructed from core/shell structure by a process of hydrogen absorption/desorption. J Am Chem Soc (2010); 132(16):5576-7.
6. Ferrando R, Jellinek J, Johnston RL. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev (2008); 108(3):845-910.
7. Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science. (2008); 320(5881):1320-2.
8. Tee YH, Grulke E, Bhattacharyya D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind Eng Chem Res (2005); 44(18):7062-70.
9. Schrick B, Blough JL, Jones AD, Mallouk TE. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel− iron nanoparticles. Chem Mater (2002); 14(12):5140-7.
10. Buhleier E, Wehner W, Vögtle F. ′ CASCADE′‐AND′ NONSKID‐CHAIN‐LIKE′ SYNTHESES OF MOLECULAR CAVITY TOPOLOGIES. Chemischer Informationsdienst. (1978); 9(25):no-.
11. Bosman DA, Janssen HM, Meijer EW. About dendrimers: structure, physical properties, and applications. Chem Rev (19990; 99(7):1665-88.
12. Zhao M, Sun L, Crooks RM. Preparation of Cu nanoclusters within dendrimer templates. J Am Chem Soc (1998); 120(19):4877-8.
13. Zhao M, Crooks RM. Homogeneous hydrogenation catalysis with monodisperse, dendrimer‐encapsulated Pd and Pt nanoparticles. Angew Chem Int Ed (1999); 38(3):364-6.
14. Crooks RM, Zhao M. Dendrimer‐Encapsulated Pt Nanoparticles: Synthesis, Characterization, and Applications to Catalysis. Adv Mater (1999); 11(3):217-20.
15. Wilson OM, Scott RW, Garcia-Martinez JC, Crooks RM. Synthesis, characterization, and structure-selective extraction of 1− 3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles. J Am Chem Soc (2005); 127(3):1015-24.
16. Yeung LK, Crooks RM. Heck heterocoupling within a dendritic nanoreactor. Nano Letters. (2001); 1(1):14-7.
17. Chechik V, Zhao M, Crooks RM. Self-assembled inverted micelles prepared from a dendrimer template: phase transfer of encapsulated guests. J Am Chem Soc (1999); 121(20):4910-1.
18. Chechik V, Crooks RM. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J Am Chem Soc (2000); 122(6):1243-4.
19. Nishihara Y, Inoue E, Okada Y and Takagi K. Sila-Sonogashira cross-coupling reactions of activated aryl chlorides with alkynylsilanes. Synlett (2008) 19: 3041-3045.
20. Mohammadi E, Movassagh B and Navidi M. Palladium‐and Solvent‐Free Synthesis of Ynones by Copper (I)‐Catalyzed Acylation of Terminal Alkynes with Acyl Chlorides under Aerobic Conditions. Helvetica Chimica Acta (2014) 97(1): 70-75.
21. Lv Q R, Meng X, Wu J S, Gao Y J, Li C L, Zhu Q Q and Chen B H. Palladium-, copper-and water solvent facile preparation of ferrocenylethynyl ketones by coupling. Catal Commun (2008) 9(11-12): 2127-2130.
22. Li Y, Zhou P, Dai Z, Hu Z, Sun P, Bao J. A facile synthesis of PdCo bimetallic hollow nanospheres and their application to Sonogashira reaction in aqueous media. New J Chem (2006); 30(6):832-7.
23. Li H, Zhu Z, Liu J, Xie S, Li H. Hollow palladium–cobalt bimetallic nanospheres as an efficient and reusable catalyst for Sonogashira-type reactions. J Mater Chem (2010); 20(21):4366-70.
24. Zhang Z and Wang Z Diatomite-supported Pd nanoparticles: an efficient catalyst for Heck and Suzuki reactions. J Org Chem (2006) 71(19): 7485-7487.
25. Boyarskii V P. Sonogashira reaction catalyzed by palladium isocyanide complex modified in situ. Russ J Gen Chem (2017), 87(8): 1663-1666.
26. Kashif Ahmed, Iqbal Tariq, Solat Ullah Siddiqui and Muhammad Mudassir. Green synthesis of cobalt nanoparticles by using methanol extract of plant leaf as reducing agent. Pure and Applied Biology. Pure and Applied Biology (2016), 5(3):453-457.
27. Sengupta D, Saha J, De G, Basu B. Pd/Cu bimetallic nanoparticles embedded in macroporous ion-exchange resins: an excellent heterogeneous catalyst for the Sonogashira reaction. J Mater Chem A (2014), 2(11):3986-92.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).

This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.