Studies on the comparison of antibacterial and catalytic activity of molybdenum Nanoparticle synthesized by chemical and biological method


Studies on the comparison of antibacterial and catalytic activity of molybdenum Nanoparticle synthesized by chemical and biological method


T. MAHESWARI, M. VENNILA*

Department of chemistry, Government Arts.College, Dharmapuri-636 705 Tamilnadu, India


International Journal of nanoparticle research

Nanobiotechnology holds a great potential in various fields of life sciences. Nanotechnology involves the use of materials with components that have dimensions less than 100nm. The demand for biosynthesized nanoparticles increased day by day due to its ecofriendly and compatibility when compare to chemical method of synthesis. Application of nano-sized materials is an emerging area of nanotechnology. Molybdenum (Mo) nanoparticle was synthesized using fast, convenient, eco-friendly biological method from the aqueous extract of plumbago zeylanica. The same was synthesized using sol-gel method also. The nanoparticles synthesized by both the methods were characterized by Fourier transform infrared spectroscopy (FTIR), ultra violet spectroscopy (UV), scanning electron microscopy (SEM) and x-ray diffraction spectroscopy (XRD) studies. Molybdenum nanoparticles were found to be inhibiting the growth of bacteria and also act as effective catalyst.


Keywords: Molybdenum nanoparticles, plumbago zeylanica, catalyst, sol-gel, antibacterial activity.

Free Full-text PDF


How to cite this article:
T. MAHESWARI, M. VENNILA.Studies on the comparison of antibacterial and catalytic activity of molybdenum Nanoparticle synthesized by chemical and biological method. International Journal of Nanoparticle Research, 2020; 3:12.


References:
1. Vasudev D. Kulkarni, Pramod S. Kulkarni Green Synthesis of Copper Nanoparticles Using Ocimum Sanctum Leaf Extract, International Journal of Chemical Studies 1,2321-4902
2. Asim umer, Shahid naveed, Naveed ramzan. Selection of a suitable method for the synthesis of copper nanoparticles, Nano brief reports and reviews vol. 7 (2012), 123.
3. Tiwari, A.; Shukla, S.K. (Ed.), In Advanced Carbon Materials and Technology, WILEY-Scrivener Publishing LLC, USA 2014.
4. Singh, P.; Katyal, A.; Kalra, R.; Chandra, R. Tetrahedron Lett. vol 49 (2008), 727. DOI: 10.1016/j.tetlet.2007.11.106
5. Tiwari, A.; Mishra, A. K.; Kobayashi, H.; Turner, A.P.F (Eds.), In Intelligent Nanomaterials, WILEY-Scrivener Publishing LLC, USA, 2012.
6. Kundu, S., Maheshwari, V., Niu, S., Saraf, R.F.: Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation Nanotechnology vol 19 (2008 ).
7. Das, N. A.; Gedaken, A. Chem. Mater., vol 9 (1997), 3144.
8. Anpo, M.; Kondo, M.; Kubokawa, Y.; Louis, C.; Che, M. J. Chem. Soc. Faraday Trans. Vol 184(1988) ,2771.
9. Liu, Y.; Qian, Y.; Zhang, M.; Chen, Z.; Wang, C. Mater. Res. Bull., vol 31(1996) 1029.
10. Zhou, J.; Xu, N. S.; Deng, S. Z.; Chen, J.; She, J. C. Chem. Phys. Lett, vol 382( 2003) 443.
11. Kumar, V., Yadav, S.C., Yadav, S.K.: Syzygium cumini leaf andseed extract mediated biosynthesis of silver nanoparticles and their characterization. J. Chem. Technol. Biotechnol. Vol 85(2010), 1301–1309.
12. Kumar, V., Yadav, S.K.: Plant-mediated synthesis of silver andgold nanoparticles and their applications. J. Chem. Technol.Biotechnol. vol 84(2009),151–157 .
13. NishaSharma,Purshotam Kaushik Medicinal,Biological and Pharmacological Aspects of Plumbago zeylanica (Linn.) JPP; vol 3(4)( 2014)117-120.
14. Cho KH, Park JE, Osaka T, Park SG. The study of antimicrobial activity and preservative effects of nanosilver ingredient.Electrochim. Acta. vol 51 (2005)956–960.
15. Baker C, Pradhan A, PakstisL, Pochan DJ, Shah SI. Synthesis and antibacterial properties of silver nanoparticles. J.Nanosci. Nanotechnol. Vol 5 (2005)244-249.
16. Martínez-Castañón GA, Niño-Martínez N, Martínez-Gutierrez F, Martínez-Mendoza JR, Ruiz F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanoparticle Res.vol 10 (2008)1343-1348.
17. Ni, J.; Yu, W.-J.; He, L.; Sun, H.; Cao, Y.; He, H.-Y.; Fan, K.-N. A green and efficient of alcohols by supported gold catalysts using aqueous H2O2 under organic Solvent-free conditions. Green Chem. Vol 11(2009) 756–759.
18. Hutchings, G.J. Heterogeneous catalysts—Discovery and design. J. Mater. Chem. 2009, 1222– 1235.
19. Zhou, J.; Hua, Z.; Cui, X.; Ye, Z.; Cui, F.; Shi, J. Hierarchical mesoporous TS-1 zeolite: A highly active and extraordinarily stable catalyst for the selective oxidation of 2,3,6- trimethylphenol. Chem. Commun.vol 46( 2010) 4994–4996.
20. Zhan, B.Z.; White, M.A.; Sham, T.K.; Pincock, J.A.; Doucet, R.J.; Rao, K.V.R.; Robertson, K.N.; Cameron, T.S. Zeolite-confined nano-RuO2: A green, selective, and catalyst for aerobic alcohol oxidation. J. Am. Chem. Soc. Vol 125(2003)
2195–2199.
21. Shi, Y.H.; Fan, M.H. Reaction kinetics for the catalytic oxidation of sulfur dioxide with microscale and nanoscale iron oxides. Ind. Eng. Chem. Res. Vol 46 (2007) 80–86.
22. Koyuncu, D.D.E.; Yasyerli, S. Selectivity and stability enhancement of iron oxide catalyst by ceria incorporation for selective oxidation of h2s to sulfur. Ind. Eng. Chem. Res. Vol 48 (2009) 5223–5229.
23. 23.Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One- dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater.vol 15 ( 2003)353–389.
24. Cademartiri, L.; Ozin, G.A. Ultrathin nanowires—A materials chemistry perspective. Adv.Mater. vol 21 (2009)1013–1020.
25. Banerjee P, Satapathy M, Mukhopahayay A and Das P 2014 Bioresour. Bioprocess. Chanda S Sci. Technol. Edu. Vol 1 (2013)13-14
26. Abhimanyu Kanneganti, Ch. Manasa, Prathyusha Doddapaneni “International Journal of Engineering and Advanced Technology” Vol-3(2014).
27. Tari, F., Manteghian, M., Bozorgi, B”Microwave-assisted synthesis of molybdenum oxide nanoparticles”Journal of Particle Science and Technology.,vol 1(2015)121-7.
28. M. Gomathi a, P.V. Rajkumar b,*, A. Prakasam a, K. Ravichandran “Green synthesis of silver nanoparticles using Datura stramonium leaf extract and assessment of theirantibacterial activity” Resource-Efficient Technologie,2017
29. Y. Zhang, E. G. Grass, S. E. Habas, F. Tao, T. Zhang, P. Yang and G. A. Somorjai, “One-Step Polyol Synthesis and Langmuir-Blodgett Monolayer Formation of Size- Tunable Monodisperse Rhodium Nanocrystals with Cata- lytically Active (111) Surface Structures,”The Journal of Physical Chemistry C, Vol. 111(2007)12243-12253.
30. Y. Borodko, H. S. Lee, H. Joo, Y. Zhang and G. A. So- morjai, “Spectroscopic Study of Thermal Degradation of PVP- Capped Rh and Pt Nanoparticles in H2 and O2 Environments,” Journal of Physical Chemistry C,Vol. 114(2010)1117-1126
31. A. Abad, P. Concepción, A. Corma and H. García, Angew.Chem., Int. Ed. vol 44, ( 2005).
32. V. Choudhary,A.Dhar,P. Jana, R. Jha and B.Uphade,Green Chem vol 7 (2005)768-770
33. S. Kanaoka, N. Yagi, Y. Fukuyama, S. Aoshima, H. Tsunoyama, T. Tsukuda and H. Sakurai,J. Am. Chem. Soc. vol 129 (2007), 12060-12061.
34. X. Yang, X. Wang, C. Liang, W. Su, C. Wang, Z. Feng, C. Li and J. Qiu, Catal. Commun. vol 9 (2008),2278-2281.
35. S. Biella, L. Prati and M. Rossi, J. Catal. vol 206 ( 2002),242-247.
36. P. Miedziak, H. Alshammari, S. Kondrat, T. Clark, T. Davies, D.Morgan, D. J. Willock, D.W. Knight, S. H. Taylor and G. Hutchings, Green Chem. vol 16 (2014),3132-3141
37. Kirsch, G.; Hesse, S.; Comel, A. Curr. Org. Synth. vol 1(2004),47-63.