Gallic acid produces hepatoprotection by modulating EGFR expression and phosphorylation in induced preneoplastic liver foci in rats


Gallic acid produces hepatoprotection by modulating EGFR expression and phosphorylation in induced preneoplastic liver foci in rats


Jorge Reyes-Esparza M.D. and Ph.D.1, Rebeca Escutia-Gutiérrez M. Pharm. 1, Francisco Garcia-Vázquez  Q.B.P. 2, Lourdes Rodríguez-Fragoso M.D. and Ph. D. 1

1Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Mexico. 2Instituto Nacional de Pediatria, Mexico City, Mexico.


Open Journal of Gastroenterology and Hepatology

The purpose of this study was to analyze the role of gallic acid as liver protector and identify its role in the regulation of EGFR expression and phosphorylation in induced preneoplastic liver lesions in rats. Male Wistar rats were randomly divided into four groups. (1) Control; (2) animals receiving gallic acid (AG) 50 mg/kg v.o. for 8 weeks; (3) animals with preneoplasia (P)  induced by a single dose of diethylnitrosamine 200 mg/kg i.p. (DEN) and two weeks after a single dose of carbon tetrachloride 2 mL/kg i.p. (CCl4); and (4) animals with preneoplasia treated with GA during 8 weeks.  In order to evaluate GA hepatoprotection on preneoplastic lesions, we performed histological examination of liver tissue using H&E staining as well as an immunohistochemical analysis for PCNA. To evaluate the effect of GA on EGFR expression and phosphorylation, we performed an immunohistochemical and western blot analysis. The results indicated that GA significantly decreased EGFR expression and pY1068 EGFR phosphorylation in animals with preneoplastic lesions. GA significantly decreased PCNA expression in animals with preneoplastic lesions, suggesting it may work as an antiproliferative agent. Additionally, GA improved the architecture and organization of liver tissue and significantly decreased serum AST, ALT and FA, which are indicators of hepatocellular damage. By histopathological and immunohistochemical analysis we demonstrated an improvement in liver morphology, a reduction of preneoplastic liver foci and a reduction of cell proliferation, as well as an improvement on liver functionality. In conclusion, GA produces hepatoprotection by modulating EGFR expression and phosphorylation in preneoplastic lesions.


Keywords: antiproliferative, Gallic acid, preneoplastic lesions, EGFR, phosphorylation

Free Full-text PDF


How to cite this article:
Jorge Reyes- Esparza, Rebeca Escutia-Gutiérrez, Francisco Garcia- Vázquez, Lourdes Rodríguez-Fragoso. Gallic acid produces hepatoprotection by modulating EGFR expression and phosphorylation in induced preneoplastic liver foci in rats.Open Journal of Gastroenterology and Hepatology, 2019, 2:27. DOI: 10.28933/ojgh-2019-12-0206


References:

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015; Mar 1; 136 (5): E359-E86. doi: 10.1002/ijc.29210
2. McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis. 2015 May;19(2):223–38. doi.org/10.1016/j.cld.2015.01.001
3. Erkekoglu P, Oral D, Chao MW, Kocer-Gumusel B. Hepatocellular Carcinoma and Possible Chemical and Biological Causes: A Review. J Environ Pathol Toxicol Oncol. 2017;36(2):171-90. doi.org/10.1615/JEnvironPatholToxicolOncol.2017020927
4. Wilson GC, Geller DA. Evolving Surgical Options for Hepatocellular Carcinoma. Surg Oncol Clin N Am. 2019 Oct;28(4):645-61. doi.org/10.1097/TP.0b013e31827afb3a
5. Wei Y, Liu J, Yan M, Zhao S, Long Y, Zhang W. Effectiveness and Safety of Combination Therapy of Transarterial Chemoembolization and Apatinib for Unresectable Hepatocellular Carcinoma in the Chinese Population: A Meta-Analysis. Chemotherapy. 2019 Sep 30;64(2):94-104. doi.org/10.1159/000502510
6. Rimassa L, Danesi R, Pressiani T, Merle P. Management of adverse events associated with tyrosine kinase inhibitors: improving outcomes for patients with hepatocellular carcinoma. Cancer Treat Rev. 2019 Jul;77:20–8. doi.org/10.1016/j.ctrv.2019.05.004
7. Montironi C, Montal R, Llovet JM. New drugs effective in the systemic treatment of hepatocellular carcinoma. Clin Liver Dis (Hoboken). 2019 Sep 2;14(2):56-61. doi.org/10.1002/cld.796
8. Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol. 2019 Mar-Apr;9(2):221-32. doi.org/10.1016/j.jceh.2019.01.004
9. Schneider, M.R.; Wolf, E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol. 2009 March; 218 (3): 460–66. doi.org/10.1002/jcp.21635
10. Komposch K, Sibilia M. EGFR Signaling in Liver Diseases. Int J Mol Sci. 2015 Dec 29;17(1). pii: E30. doi.org/10.3390/ijms17010030
11. Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol. 2014 Jan;49(1):9-23. doi.org/10.1007/s00535-013-0907-x
12. Choubey S, Goyal S, Varughese LR, Kumar V, Sharma AK, Beniwal V. Probing Gallic Acid for Its Broad Spectrum Applications. Mini Rev Med Chem. 2018;18(15):1283-93. doi.org/10.2174/1389557518666180330114010
13. Verma S, Singh A, Mishra A. Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol. 2013 May; 35(3):473-85. DOI: 10.1016/j.etap.2013.02.011
14. Locatelli C, Filippin-Monteiro FB, Creczynski-Pasa TB. Alkyl esters of gallic acid as anticancer agents: a review. Eur J Med Chem. 2013 Feb;60:233-9. doi.org/10.1016/j.ejmech.2012.10.056
15. Jagan S, Ramakrishnan G, Anandakumar P, Kamaraj S, Devaki T. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem. 2008 Dec;319(1-2):51-9. doi.org/10.1007/s11010-008-9876-4
16. Da Silva SL, Chaar Jda S, Yano T. Chemotherapeutic potential of two gallic acid derivative compounds from leaves of Casearia sylvestris Sw (Flacourtiaceae). Eur J Pharmacol. 2009 Apr 17;608(1-3):76-83. doi.org/10.1016/j.ejphar.2009.02.004
17. National Research Council (US). Guide for the Care and Use of Laboratory Animals (8th edn.). National Academies Press, Washington (DC), 2011. ISBN-10: 0-30- 15400-6
18. Libbrecht L, Desmet V, Roskms T. Preneoplastic lesions in human hepatocarcinogenesis. Liver Intl 2005; 25: 16-27. doi.org/10.1111/j.1478-3231.2005.01016.x
19. Berasain C · Nicou A. · Garcia-Irigoyen O. Et al. Epdermal growth factor receptor signaling in hepatocellular carcinoma: inflammatory activation and a new intracellular regulatory mechanism. Dig Dis. 20102; 30 (5): 524-31. doi.org/10.1159/000341705
20. Cioca A, Cimpean A, Ceausu R, Fit AM, Zaharie T, Al-Hajjar N, et al. Crosstalk between EGFR and p53 in Hepatocellular Carcinoma. Asian Pac J Cancer Prev. 2014;15(19):8069-73. doi.org/10.1159/000341705
21. Yamaguchi K, Carr BI, Nalesnik MA. Concomitant and isolated expression of TGF-alpha and EGF-R in human hepatoma cells supports the hypothesis of autocrine, paracrine, and endocrine growth of human hepatoma. J Surg Oncol. 1995 Apr; 58 (4): 240-5. doi.org/10.1002/jso.2930580409
22. Pang L, Xu L, Yuan C, Li X, Zhang X, Wang W, et al. Activation of EGFR-KLF4 positive feedback loop results in acquired resistance to sorafenib in hepatocellular carcinoma. Mol Carcinog. 2019 Nov;58(11):2118-26. doi.org/10.1002/mc.23102
23. Li X, Tsauo J, Geng C, Zhao H, Lei X, Li X. Ginsenoside Rg3 Decreases NHE1 Expression via Inhibiting EGF-EGFR-ERK1/2-HIF-1 α Pathway in Hepatocellular Carcinoma: A Novel Antitumor Mechanism. Am J Chin Med. 2018;46(8):1915-31. doi.org/10.1142/S0192415X18500969
24. Wang L, Yao J, Shi X, Hu L, Li Z, Song T, et al. MicroRNA-302b suppresses cell proliferation by targeting EGFR in human hepatocellular carcinoma SMMC-7721 cells. BMC Cancer. 2013 Oct 2;13:448. doi.org/10.1186/1471-2407-13-448
25. Metere A, Giacomelli L. Absorption, metabolism and protective role of fruits and vegetables polyphenols against gastric cancer. Eur Rev Med Pharmacol Sci. 2017 Dec;21(24):5850-58. doi.org/10.26355/eurrev_201712_14034
26. Lambert JD, Elias RJ. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys. 2010 Sep 1;501(1):65-72. doi.org/10.1016/j.abb.2010.06.013
27. Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. Gallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line(C121). Int J Med Sci. 2016 Nov; 41(6):525-30. PMC5106568
28. AborehabNM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int 2019 Jun; 19: 154. doi: 10.1186/s12935-019-0868-0. doi.org/10.1186/s12935-019-0868-0
29. Aglan HA, Ahmed HH, El-Toumy SA, Mahmoud NS. Gallic acid against hepatocelular carcinoma: An integrated scheme of thepotential mechanisms of action from in vivo study. Tumour Biol 2017 Jun; 39 (6): 1010428317699127. doi.org/10.1177/1010428317699127
30. Verma S, Singh A, Mishra A. Gallic acid: molecular rival of cancer. Environ Toxicol Pharm. 2013 May; 35 (3): 473-85. doi.org/10.1016/j.etap.2013.02.011
31. Wang X, Liu K, Ruan M, Yang J, Gao Z. Gallic acid inhibits fibroblast growth and migration in keloids through the AKT/ERK signaling pathway. Acta Biochim Biophys Sin (Shanghai). 2018 Nov; 50: 1114-20. doi.org/10.1093/abbs/gmy115
32. Phan AN, Hua TN, Kim MK, Vo VT, Choi JW, Kim HW, et al. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016 Aug 23; 7(34): 54702-13. doi.org/10.18632/oncotarget.10581
33. Agarwal C, Tyagi A, Agarwal R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol. Cancer Ther. 2006 Dec; 5 (12): 3294-302. doi.org/10.1158/1535-7163.MCT-06-0483
34. Berasain C, Ujue Latasa M, Urtasun R, Goñi S, Elizalde M, Garcia-Irigoyen O, et al. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer. Cancers (Basel). 2011 May; 3(2): 2444-61. doi.org/10.1158/1535-7163.MCT-06-0483
35. Chen YJ, Lin KN, Jhang LM, Huang CH, Lee YC, Chang LS. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem Biol Interact. 2016 May; 252:131.140. doi.org/10.1016/j.cbi.2016.04.025
36. Nam B, Rho JK, Shin DM, Son J. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover. Bioorg Med Chem Lett. 2016 Oct; 26 (19): 4571-5. doi.org/10.1016/j.bmcl.2016.08.083
37. Shanmuganathan S, Angayarkanni N. Chebulagic acid Chebulinic acid and Gallic acid, the active principles of Triphala, inhibit TNFα induced pro-angiogenic and pro-inflammatory activities in retinal capillary endothelial cells by inhibiting p38, ERK and NFkB phosphorylation. Vascul Pharmacol. 2018 Sep; 108: 23-35. doi.org/ 10.1016/j.vph.2018.04.005
38. Park D.H., Shin J.W., Park S.K., Seo J.N., Li L., Jang J.J. y Lee M.J. 2009. Diethylnitrosamine (DEN) induces irreversible hepatocellular carcinogenesis through overexpression of G1/S-phase regulatory proteins in rat. Toxicol Lett. 2009 Dec 15; 191 (2-3): 321-6. doi.org/ 10.1016/j.toxlet.2009.09.016
39. Raina K, Rajamanickam S, Deep G, Singh M, Agarwal R, Agarwal C. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol Cancer Ther. 2008 May; 7(5): 1258-67. doi.org/10.1158/1535-7163.MCT-07-2220
40. Demiroglu-Zergeroglu A, Candemir G, Turhanlar E, Sagir F, Ayvali N. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells. Biomed Pharmacother. 2016 Dec; 84: 2000-7. doi.org/10.1016/j.biopha.2016.11.005
41. Heidarian E, Keloushadi M, Ghatreh-Samani K, Valipour P. The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells. Biomed Pharmacother. 2016 Dec; 84: 264-9. doi.org/10.1016/j.biopha.2016.09.046