Influence of mercuric chloride and sodium hypochlorite on apical and axillary buds regeneration of Colocasia esculenta in tissue culture

Influence of mercuric chloride and sodium hypochlorite on apical and axillary buds regeneration of Colocasia esculenta in tissue culture


1Central Laboratory of Plant Biotechnology and Plant Breeding
2Benin Center for Scientific Research and Innovation

American Journal of Biotechnology and Bioscience

Taro (Colocasia esculenta L. SCHOTT) is a staple food in many southern countries and an ancient starchy crop consumed by more than 400 million people. It is treated by diseases and pests that affect seed availability. Thus, the techniques of in vitro culture mostly used to overcome the problem of seeds production meet enormous difficulties of infection and necrosis of the explants. This study aims to determine the optimal use of mercuric chloride and sodium hypochlorite for disinfection of apical and axillary buds of taro. For this purpose, three doses of sodium hypochlorite (8%, 10% and 12%) and mercuric chloride (0.08%, 0.1% and 0.15%) were used with three immersion times ( 25 min, 30 min and 45 min) for sodium hypochlorite and (5min, 7min and 10min) for mercuric chloride. A binary logistic analysis was performed to understand or predict the effect of different doses of NaOCl and HgCl2 on the behavior of apical and axillary buds of taro. The results showed that 8% sodium hypochlorite with immersion time of 25 minutes is favorable for the disinfection of both apical and axillary explants of taro. For mercuric chloride, only the dose of 0.15% is effective for apical bud survival. The present study offers an opportunity to make available the seed of taro through the organogenesis of the species without any risk of infection.

Keywords: Colocasia esculenta, in vitro, desinfection.

Free Full-text PDF

How to cite this article:
R. M. AKPLOGAN, G. H. T. CACAÏ, S. S. HOUEDJISSIN, V.MÈGNIKPA, C. AHANHANZ.Influence of mercuric chloride and sodium hypochlorite on apical and axillary buds regeneration of Colocasia esculenta in tissue culture. American Journal of Biotechnology and Bioscience, 2018; 2:10. DOI: 10.28933/ajbb-2018-11-1908

1. FAO. 2016. FAO Statistical Databases. Food and agriculture organization of the United Nations.
2. FAO. 2008. Crop Prospects and Food Situation. No 1, Rome, Italy.
3. Aljuhaimi, F., Şimşek, Ş., & Özcan, M. M. (2017). Comparison of chemical properties of taro (Colocasia esculenta L.) and tigernut (Cyperus esculentus ) tuber and oils. Journal of Food Processing and Preservation, 42(3), e13534. doi:10.1111/jfpp.13534.
4. Nurhartadi, E., Utami, R., Widowati, E., & Karunawati, B. M. (2017). The effect of Taro (Colocasia esculenta L.) and Lesser Yam flour (Dioscorea esculenta L.) as thickener agent on physical characteristics of frozen wheygurt. Journal of Physics: Conference Series, 909, 012089. doi:10.1088/1742-6596/909/1/012089.
5. Solomo E., Termote C., Tchatchambe W. B., Malombo T. B., Katusi L and Dhed’a D. (2017). Alternate title: Nutritional and toxic substances from leaves of four wild food plants consumed by the riparian population of Yoko forest reserve in Ubundu Territory in the province of Tshopo (DR Congo). International Journal of Innovation and Applied Studies; Rabat Vol. 21, Iss. 2, 298,300-305.
6. Bamidele O. P., Ogundele F.G., Ojubanire B.A, Fasogbon M.B. and Bello O.W 2014Nutritional composition of “gari” analog produced from cassava (Manihot esculenta) and cocoyam (Colocasia esculenta) tuber. Food Science and Nutrition: 2(6):706–711. DOI: 10.1002/fsn3.165.
7. A.R.E.U (Agricultural Research and Extension Unit). 2003. Taro (Colocasiaesculenta). The Ministry of Agricultural and Natural Resources of Mauritius.
8. Habashi H.N., Radwan H.M. 1997. Chemical, physical and technological studies on Egyptian taro. Annals of Agricultural Science, Ain Shams University (Egypt), 42 (1): 169 – 185.
9. Salazar M.S., Fernandez R.Z., Jarret R.L.1985. Virus-free plant obtained by thermotherapyand meristem culture of white (Xanthosoma sagittifolium (L.) Schott) and purple (X. violaceum Schott) cocoyams. In: Proceedings of the VII Symposium of Inernational Society Tropical Root Crops, Gosier, Guadeloupe, pp. 161-176.
10. Nzietchueng, S. 1985. Root rot of Xanthosoma sagittifolium caused byPythium myriotylum in Cameroon. In: Tropical root crops: Production and uses in Africa. Proceedings of the SecondTriennial Symposium of the InternationalSociety for Tropical Root Crops. (Eds.R. Terry,E.V. Doku, O.B. Arene., N.M. Mahungu. Douala, Cameroon, pp. 185-188.
11. Droh G. 2010. Induction de la tubérisation in vitro chez le taro (Colocasia esculenta (L.) Schott (Aracees)) pour la production de semences. Mémoire de DEA : Option Amelioration des especes vegetales ). Université de COCODY Abidjan (Cote d’Ivoire) pp. 59.
12. Gautheret R.J. 1959. La culture des tissues végétaux, techniques et réalisations » édition Masson, pp.863.
13. Auge R. 1989. La culture in vitro et des applications horticoles, Lavoisier.p.225.
14. Bajaj Y.P.S. 1997. Biotechnology in Agriculture and Forestry : High-tech and Micropropagation, édition Springer, pp. 133.
15. Hussain Z., Tyagi R. K. 2006. In vitro corm induction and genetic stability of regenerated plants in taro [Colocasia esculenta (L.) Schoot], Indian Journal of Biotechnology (5 ): pp 535 – 542.
16. Paul K.K, Bari M.A. 2007. Protocol establishment for micro propagation and vitro callus regeneration of Maulavi Kachu (Xanthosoma sagittifolium L. Schott) from cormel axillari bud meristem. J. Plant Sci. 2(4):398-406.
17. Chien-Ying K., Ji-Ping K., and Rohan Mc. D. 2008 In vitro micropropagation of white dasheen (Colocassia esculenta) African Journal of Biotechnology Vol. 7 (1), pp. 041-043
18. Hossain J. 2012. In Vitro Organogenesis of Colocasia esculenta cv.antiquorum L. American Journal of Plant Sciences (3): 709-713.
19. Said R., Hamaidi M.S. 2009. Essais de multiplication in vitro par organogenese directe d’une plantemedicinale Aristolochia longa L. Agricultura – Ştiinţă şi practică nr. 3(4): 71-72.
20. Ahanhanzo C, Dossoukpevi R, Agassounon Djikpo Tchibozo M, Agbangla C, Dramane K, 2009.Contribution à l’optimisation des conditions de culture in vitro de deux espèces d’Ocimum spp.(Lamiaceae) et étude de l’influence des manipulations in vitro sur la teneur et la qualité de leur acide désoxyribonucléique (ADN). rev. cames – série a, vol. 09.
21. Kovalskaya, N., and Hammond, R. W. (2014). Molecular biology of viroid–host interactions and disease control strategies. Plant Science, 228, 48–60. doi:10.1016/j.plantsci.2014.05.006
22. Ahanhanzo C., Adoukonou-Sagbadja H., Yehouessi W., Ahoton L., Ganglo J. C., Agassounon Djikpo-Tchibozo M., Agbidinoukoun A., et Agbangla C. 2013. Etude de l’influence du chlorure mercurique sur la survie in vitro d’explants et de l’aptitude à la régénération de teck (Tectona grandis L. f., Verbenaceae). Journal of Applied Biosciences 65 : 4935 – 4944.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).

This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.