A novel plant genome editing CRISPR/Cas9 System: To modify stress tolerance responses in plants

A novel plant genome editing CRISPR/Cas9 System: To modify stress tolerance responses in plants

M. Zulfiqar1*, I.Qamar2, M.Murtaza2, Z.Haider3, A.Javed1, A.Abbas1 , A.Haider3, M.U.Masood3, A.Iftikhar1
1Department of Bioinformatics & Biotechnology, Government College University Faisalabad (GCUF), Allama Iqbal Road,38000-Faisalabad-Pakistan; 2.National Center for Bioinformatics (NCB), Quaid-i-Azam University, University Road Islamabad, Islamabad Capital Territory-Pakistan; 3.Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad (UAF), University main Road, Faisalabad, Punjab-38000

The plant genome modification by Crispr/Cas9 system is gaining ground. In molecular biology, the use of this indispensable tool works on the basis of target recognition due to the existence of a short protospacer adjacent motif (PAM) that is complementary to the desired strand. The components of the genome-editing tool are guide RNA, Cas9 protein. The mechanistic nature of CRISPR/ Cas9 technology i.e. adaptation, expression and interference lead the desirable mutations in the crop plants. According to the need one can use the different types of programmable DNA targeting and editing platform type. The goal of this review is to provide an idea of the production of stress-tolerant crops. The molecular perception from structural and mechanistic research grant a groundwork for rational engineering for the production of plants that can withstand different kinds of stress.

Keywords:  Crispr, stress tolerance, growth, abiotic stress, mutation, targeted mutagenesis

Free Full-text PDF

How to cite this article:
M. Zulfiqar, I.Qamar, M.Murtaza, Z.Haider, A.Javed, A.Abbas, A.Haider, M.U.Masood. A.Iftikhar1A novel plant genome editing CRISPR/Cas9 System: To modify stress tolerance responses in plants. American Journal of Biotechnology and Bioscience, 2019; 2:17


1. Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18.
2. Alkhnbashi, O. S., Shah, S. A., Garrett, R. A., Saunders, S. J., Costa, F., & Backofen, R. (2016). Characterizing leader sequences of CRISPR loci. Bioinformatics, 32(17), i576-i585.
3. Biswas, S., Razzaque, S., Elias, S. M., Amin, U. M., Haque, T., Islam, S. T., . . . Seraj, Z. I. (2015). Effect of the vacuolar Na+/H+ antiporter transgene in a rice landrace and a commercial rice cultivar after its insertion by crossing. Acta physiologiae plantarum, 37(1), 1-10.
4. Conde, A., Chaves, M. M., & Gerós, H. (2011). Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant and Cell Physiology, 52(9), 1583-1602.
5. Cuartero, J., Bolarin, M., Asins, M., & Moreno, V. (2006). Increasing salt tolerance in the tomato. Journal of experimental botany, 57(5), 1045-1058.
6. Dugar, G., Herbig, A., Förstner, K. U., Heidrich, N., Reinhardt, R., Nieselt, K., & Sharma, C. M. (2013). High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet, 9(5), e1003495.
7. Endo, M., Mikami, M., & Toki, S. (2014). Multi-gene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant and Cell Physiology, pcu154.
8. Fan, D., Liu, T., Li, C., Jiao, B., Li, S., Hou, Y., & Luo, K. (2015). Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific reports, 5, 12217.
9. Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., . . . Mao, Y. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell research, 23(10), 1229.
10. Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., & Tanaka, Y. (2004). Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant and Cell Physiology, 45(2), 146-159.
11. Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., . . . Xia, Q. (2015). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant molecular biology, 87(1-2), 99-110.
12. Gasiunas, G., Barrangou, R., Horvath, P., & Siksnys, V. (2012). Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences, 109(39), E2579-E2586.
13. Gayatonde, V., & Vennela, P. R. CRISPR-Cas; A potential technique for crop improvement.
14. Haft, D. H., Selengut, J., Mongodin, E. F., & Nelson, K. E. (2005). A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 1(6), e60.
15. Hoang, T. M. L., Tran, T. N., Nguyen, T. K. T., Williams, B., Wurm, P., Bellairs, S., & Mundree, S. (2016). Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities. Agronomy, 6(4), 54.
16. Hoang, T. M. L., Williams, B., Khanna, H., Dale, J., & Mundree, S. G. (2014). Physiological basis of salt stress tolerance in rice expressing the antiapoptotic gene SfIAP. Functional Plant Biology, 41(11), 1168-1177.
17. Hsieh, T.-H., Lee, J.-T., Yang, P.-T., Chiu, L.-H., Charng, Y.-y., Wang, Y.-C., & Chan, M.-T. (2002). Heterology expression of the ArabidopsisC-repeat/dehydration response element binding Factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant physiology, 129(3), 1086-1094.
18. Huang, B., & Liu, J.-Y. (2006). A cotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression. Biochemical and biophysical research communications, 343(4), 1023-1031.
19. Jacobs, T. B., LaFayette, P. R., Schmitz, R. J., & Parrott, W. A. (2015). Targeted genome modifications in soybean with CRISPR/Cas9. BMC biotechnology, 15(1), 16.
20. Jain, M. (2015). Function genomics of abiotic stress tolerance in plants: a CRISPR approach. Frontiers in plant science, 6, 375.
21. Jiang, W., Yang, B., & Weeks, D. P. (2014). Efficient CRISPR/Cas9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS One, 9(6), e99225.
22. Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic acids research, gkt780.
23. Kant, P., Kant, S., Gordon, M., Shaked, R., & Barak, S. (2007). STRESS RESPONSE SUPPRESSOR1 and STRESS RESPONSE SUPPRESSOR2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. Plant physiology, 145(3), 814-830.
24. Karan, R., DeLeon, T., Biradar, H., & Subudhi, P. K. (2012). Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PloS one, 7(6), e40203.
25. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., & Shinozaki, K. (1999). Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature biotechnology, 17(3), 287-291.
26. Kasuga, M., Miura, S., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2004). A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer. Plant and Cell Physiology, 45(3), 346-350.
27. Kumar, K., Kumar, M., Kim, S.-R., Ryu, H., & Cho, Y.-G. (2013). Insights into genomics of salt stress response in rice. Rice, 6(1), 27.
28. Kumar, V., & Jain, M. (2015). The CRISPR–Cas system for plant genome editing: advances and opportunities. Journal of experimental botany, 66(1), 47-57.
29. Larson, M. H., Gilbert, L. A., Wang, X., Lim, W. A., Weissman, J. S., & Qi, L. S. (2013). CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature protocols, 8(11), 2180-2196.
30. Li, J.-F., Norville, J. E., Aach, J., McCormack, M., Zhang, D., Bush, J., . . . Sheen, J. (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature biotechnology, 31(8), 688-691.
31. Li, L., Wang, F., Yan, P., Jing, W., Zhang, C., Kudla, J., & Zhang, W. (2017). A phosphoinositide‐specific phospholipase C pathway elicits stress‐induced Ca2+ signals and confers salt tolerance to rice. New Phytologist, 214(3), 1172-1187.
32. Liang, C., Zheng, G., Li, W., Wang, Y., Hu, B., Wang, H., . . . Tan, D. X. (2015). Melatonin delays leaf senescence and enhances salt stress tolerance in rice. Journal of pineal research, 59(1), 91-101.
33. Lowder, L. G., Zhang, D., Baltes, N. J., Paul, J. W., Tang, X., Zheng, X., . . . Qi, Y. (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiology, 169(2), 971-985.
34. Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., . . . Vainstein, A. (2010). Nontransgenic genome modification in plant cells. Plant physiology, 154(3), 1079-1087.
35. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
36. Niewoehner, O., Jinek, M., & Doudna, J. A. (2014). Evolution of CRISPR RNA recognition and processing by Cas6 endonucleases. Nucleic Acids Research, 42(2), 1341-1353.
37. Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P., & Lim, W. A. (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), 1173-1183.
38. Rani, R., Yadav, P., Barbadikar, K. M., Baliyan, N., Malhotra, E. V., Singh, B. K., . . . Singh, D. (2016). CRISPR/Cas9: a promising way to exploit genetic variation in plants. Biotechnology letters, 38(12), 1991-2006.
39. Ratner, H. K., Sampson, T. R., & Weiss, D. S. (2016). Overview of CRISPR–Cas9 Biology. Cold Spring Harbor Protocols, 2016(12), pdb. top088849.
40. Sander, J. D., & Joung, J. K. (2014). CRISPR-Cas systems for editing, regulating and targeting genomes. Nature biotechnology, 32(4), 347-355.
41. Semenova, E., Jore, M. M., Datsenko, K. A., Semenova, A., Westra, E. R., Wanner, B., . . . Severinov, K. (2011). Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proceedings of the National Academy of Sciences, 108(25), 10098-10103.
42. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., . . . Qiu, J.-L. (2013). Targeted genome modification of crop plants using a CRISPR-Cas system. Nature biotechnology, 31(8), 686-688.
43. Singla-Pareek, S. L., Yadav, S. K., Pareek, A., Reddy, M., & Sopory, S. (2008). Enhancing salt tolerance in a crop plant by overexpression of glyoxalase II. Transgenic research, 17(2), 171-180.
44. Todaka, D., Nakashima, K., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2012). Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice, 5(1), 6.
45. Wang, S., Zhang, S., Wang, W., Xiong, X., Meng, F., & Cui, X. (2015). Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant cell reports, 34(9), 1473-1476.
46. Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1-14.
47. Wiedenheft, B., Sternberg, S. H., & Doudna, J. A. (2012). RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385), 331-338.
48. Woo, J. W., Kim, J., Kwon, S. I., Corvalán, C., Cho, S. W., Kim, H., . . . Kim, J.-S. (2015). DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature biotechnology.
49. Xing, H.-L., Dong, L., Wang, Z.-P., Zhang, H.-Y., Han, C.-Y., Liu, B., . . . Chen, Q.-J. (2014). A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC plant biology, 14(1), 327.
50. Xu, R.-F., Li, H., Qin, R.-Y., Li, J., Qiu, C.-H., Yang, Y.-C., . . . Yang, J.-B. (2015). Generation of inheritable and “transgene clean” targeted genome-modified rice in later generations using the CRISPR/Cas9 system. Scientific Reports, 5, 11491.
51. Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in plant science, 10(2), 88-94.
52. Zaidi, S. S.-e.-A., Mansoor, S., Ali, Z., Tashkandi, M., & Mahfouz, M. M. (2016). Engineering plants for geminivirus resistance with CRISPR/Cas9 system. Trends in plant science, 21(4), 279-281.
53. Zhang, Z., Li, Q., Wu, H., Zhang, C., Cheng, K., Zhou, H., . . . Mu, S. (2015). Materials Chemistry A. Synthesis, 120, 110.143.
54. Zhao, F., & Zhang, H. (2006). Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant cell, tissue and organ culture, 86(3), 349-358.
55. Zhou, H., Liu, B., Weeks, D. P., Spalding, M. H., & Yang, B. (2014). Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic acids research, gku806.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)

CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.