Nanotechnology: Transformation of agriculture and food security

Nanotechnology: Transformation of agriculture and food security

Muhammad Zubair Ghouri 2#, Zulqurnain Khan1#, Sultan Habibullah Khan2, Muhammad Ismail5, Syed Ovais Aftab4, Qaisar Sultan6, Aftab Ahmad2,3*

1Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan; 2Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan; 3Department of Biochemistry, University of Agriculture, Faisalabad; 4Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad; 5Department of Forestry and Range Management, UAF, Faisalabad Pakistan; 6Department of Botany, GCUF, Faisalabad, Pakistan

Agriculture sector is the backbone of developing countries for their economy. Growing world’s population is putting more pressure on agriculture sector to address the crises of food security. Today, nanotechnology is working as technological advancement to solve problems related to food security and agriculture. Nanotechnology is providing efficient alternatives to increase the crop production by managing the insect/pests in agriculture in an eco-friendly manner. It also promotes plant efficiency to absorb nutrients. Nanotechnology in conjunction with genome editing tools like CRISPR/Cas, has been used as delivery tool for template DNA and proteins. In addition, nano-formulations based pesticides and insecticides are being used in agriculture to increase solubility, mobility and durability. Moreover, food processing, packing and storage has also been improved through nanomaterials applications. Although, nanotechnology applications are advancing in almost all fields, health and environmental safety concerns do exist. In this review we summarized exciting applications of nanotechnology in food and agriculture sector along with its prospective merits and associated risks.

Keywords:  Nanotechnology, Nanoparticles, Biosynthesis, Agriculture, Food Sciences, Environmental Sciences

Free Full-text PDF

How to cite this article:
Muhammad Zubair Ghouri, Zulqurnain Khan, Sultan Habibullah Khan, Muhammad Ismail, Syed Ovais Aftab, Qaisar Sultan, Aftab Ahmad. Nanotechnology: Transformation of agriculture and food security. American Journal of Biotechnology and Bioscience, 2020; 3:19


1. Ali, S.M., 2014. A review on contamination and leaching of nitrate in the ground water. International Journal of Physical and Social Sciences, 4(12), p.491.
2. Alic, N., Hoddinott, M.P., Foley, A., Slack, C., Piper, M.D. and Partridge, L., 2012. Detrimental effects of RNAi: a cautionary note on its use in Drosophila ageing studies. PloS one, 7(9), p.e45367.
3. Ankamwar, B., 2010. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. Journal of Chemistry, 7(4), pp.1334-1339.
4. Avella, M. and Jan, J., 2005. De Vlieger, Maria Emanuela Errico, Sabine Fischer, Paolo Vacca, Maria Grazia Volpe, Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry, 93(3), pp.467-474.
5. Bankar, A., Joshi, B., Kumar, A.R. and Zinjarde, S., 2010. Banana peel extract mediated synthesis of gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 80(1), pp.45-50.
6. Baruah, S. and Dutta, J., 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters, 7(3), pp.191-204.
7. Basavaraja, S., Balaji, S.D., Lagashetty, A., Rajasab, A.H. and Venkataraman, A., 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Materials Research Bulletin, 43(5), pp.1164-1170.
8. Bayer, J., Rädler, J.O. and Blossey, R., 2005. Chains, dimers, and sandwiches: melting behavior of DNA nanoassemblies. Nano letters, 5(3), pp.497-501.
9. Berger, M., 2019. The promises of food nanotechnology. Appentiks A of the Report of Friends of the Earth (http://www. foe. org/pdf/nano_food. pdf (17 Σεπτεµβρίου 2010).
10. Binupriya, A.R., Sathishkumar, M. and Yun, S.I., 2009. Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Industrial & Engineering Chemistry Research, 49(2), pp.852-858.
12. Cao, Z., Stowers, C., Rossi, L., Zhang, W., Lombardini, L. and Ma, X., 2017. Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.). Environmental Science: Nano, 4(5), pp.1086-1094.
13. Capecchi, M.R., 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nature reviews genetics, 6(6), p.507.
14. Chhipa, H. and Joshi, P., 2016. Nanofertilisers, nanopesticides and nanosensors in agriculture. In Nanoscience in Food and Agriculture 1 (pp. 247-282). Springer, Cham.
15. Chien, S.H., Prochnow, L.I., Tu, S. and Snyder, C.S., 2011. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: an update review. Nutrient Cycling in Agroecosystems, 89(2), pp.229-255.
16. Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A. and Zhang, F., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), pp.819-823.
17. Conway, G., 2019. The doubly Green Revolution: food for all in the twenty-first century. Cornell University Press.
18. Das, S.K., Das, A.R. and Guha, A.K., 2009. Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir, 25(14), pp.8192-8199.
19. Dasgupta, N., Ranjan, S. and Ramalingam, C., 2017. Applications of nanotechnology in agriculture and water quality management. Environmental Chemistry Letters, 15(4), pp.591-605.
20. de Oliveira, J.L., Campos, E.V., Germano‐Costa, T., Lima, R., Vechia, J.F.D., Soares, S.T., de Andrade, D.J., Gonçalves, K.C., do Nascimento, J., Polanczyk, R.A. and Fraceto, L.F., 2019. Association of zein nanoparticles with botanical compounds for effective pest control systems. Pest management science, 75(7), pp.1855-1865.
21. Devi, P.V., Duraimurugan, P. and Chandrika, K.S.V.P., 2019. Bacillus thuringiensis-based nanopesticides for crop protection. In Nano-Biopesticides Today and Future Perspectives (pp. 249-260). Academic Press.
22. El-Aziz, M.A., Morsi, S.M.M., Salama, D.M., Abdel-Aziz, M.S., Elwahed, M.S.A., Shaaban, E.A. and Youssef, A.M., 2019. Preparation and characterization of chitosan/polyacrylic acid/copper nanocomposites and their impact on onion production. International journal of biological macromolecules, 123, pp.856-865.
23. Elbashir, S.M., Harborth, J., Weber, K. and Tuschl, T., 2002. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 26(2), pp.199-213.
24. Elmer, W. and White, J.C., 2018. The future of nanotechnology in plant pathology. Annual review of phytopathology, 56, pp.111-133.
25. Esmaeili, F., Ghahremani, M.H., Ostad, S.N., Atyabi, F., Seyedabadi, M., Malekshahi, M.R., Amini, M. and Dinarvand, R., 2008. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. Journal of drug targeting, 16(5), pp.415-423.
26. Fortunati, E., Mazzaglia, A. and Balestra, G.M., 2019. Sustainable control strategies for plant protection and food packaging sectors by natural substances and novel nanotechnological approaches. Journal of the Science of Food and Agriculture, 99(3), pp.986-1000.
27. Gade, A.K., Bonde, P., Ingle, A.P., Marcato, P.D., Duran, N. and Rai, M.K., 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2(3), pp.243-247.
28. Gamucci, O., Bertero, A., Gagliardi, M. and Bardi, G., 2014. Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings, 4(1), pp.139-159.
29. García, M., Forbe, T. and Gonzalez, E., 2010. Potential applications of nanotechnology in the agro-food sector. Food Science and Technology, 30(3), pp.573-581.
30. García, M., Forbe, T. and Gonzalez, E., 2010. Potential applications of nanotechnology in the agro-food sector. Food Science and Technology, 30(3), pp.573-581.
31. Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P. and Yacaman, M.J., 2002. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano letters, 2(4), pp.397-401.
32. Glass, Z., Li, Y. and Xu, Q., 2017. Nanoparticles for CRISPR–Cas9 delivery. Nature biomedical engineering, 1(11), p.854.
33. Gnanadesigan, M., Anand, M., Ravikumar, S., Maruthupandy, M., Ali, M.S., Vijayakumar, V. and Kumaraguru, A.K., 2012. Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Applied Nanoscience, 2(2), pp.143-147.
34. Gogos, A., Knauer, K. and Bucheli, T.D., 2012. Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of agricultural and food chemistry, 60(39), pp.9781-9792.
35. Grumezescu, A. and Oprea, A.E. eds., 2017. Nanotechnology Applications in Food: Flavor, Stability, Nutrition and Safety. Academic Press.
36. Guha, T.K., Wai, A. and Hausner, G., 2017. Programmable genome editing tools and their regulation for efficient genome engineering. Computational and structural biotechnology journal, 15, pp.146-160.
37. Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S.R.K., Muniyandi, J., Hariharan, N. and Eom, S.H., 2009. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces, 74(1), pp.328-335.
38. Handford, C.E., Dean, M., Henchion, M., Spence, M., Elliott, C.T. and Campbell, K., 2014. Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends in Food Science & Technology, 40(2), pp.226-241.
39. Harguindey, A., Domaille, D.W., Fairbanks, B.D., Wagner, J., Bowman, C.N. and Cha, J.N., 2017. Synthesis and Assembly of Click‐Nucleic‐Acid‐Containing PEG–PLGA Nanoparticles for DNA Delivery. Advanced Materials, 29(24), p.1700743.
40. Horner, S.R., Mace, C.R., Rothberg, L.J. and Miller, B.L., 2006. A proteomic biosensor for enteropathogenic E. coli. Biosensors and Bioelectronics, 21(8), pp.1659-1663.
41. Husseiny, M.I., El-Aziz, M.A., Badr, Y. and Mahmoud, M.A., 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67(3-4), pp.1003-1006.
42. Hwang, E.T. and Gu, M.B., 2013. Enzyme stabilization by nano/microsized hybrid materials. Engineering in Life Sciences, 13(1), pp.49-61.
43. Jafarizadeh-Malmiri, H., Sayyar, Z., Anarjan, N. and Berenjian, A., 2019. Nanobiotechnology in Food: Concepts, Applications and Perspectives. Springer.
44. Jain, D., Daima, H.K., Kachhwaha, S. and Kothari, S.L., 2009. Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Digest journal of nanomaterials and biostructures, 4(3), pp.557-563.
45. Jeevanandam, J., Barhoum, A., Chan, Y.S., Dufresne, A. and Danquah, M.K., 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology, 9(1), pp.1050-1074.
46. Khan, Z., Khan, S.H., Ghouri, M.Z., Shahzadi, H., Arshad, S.F., Waheed, U., Firdous, S. and Ahmad, A., 2019. Nanotechnology: An Elixir to Life Sciences.
47. Kim, D.Y., Kadam, A., Shinde, S., Saratale, R.G., Patra, J. and Ghodake, G., 2018. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. Journal of the Science of Food and Agriculture, 98(3), pp.849-864.
48. Kothari, R. and Wani, K.A., 2019. Environmentally friendly slow release nano-chemicals in agriculture: a synoptic review. In Smart Farming Technologies for Sustainable Agricultural Development (pp. 220-240). IGI Global.
49. Kowshik, M., Ashtaputre, S., Kharrazi, S., Vogel, W., Urban, J., Kulkarni, S.K. and Paknikar, K.M., 2002. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 14(1), p.95.
50. Kuila, D., Tien, M., Lvov, Y.M., McShane, M.J., Aithal, R.K., Singh, S., Potluri, A., Kaul, S., Patel, D.S. and Krishna, G., 2004, December. Nano-assembly of immobilized ligninolytic enzymes for biocatalysis, bioremediation, and biosensing. In Nanosensing: Materials and Devices (Vol. 5593, pp. 267-276). International Society for Optics and Photonics.
51. Laware, S.L. and Raskar, S., 2014. Influence of Zinc Oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science, 3(7), pp.874-881.
52. Lee, K., Conboy, M., Park, H.M., Jiang, F., Kim, H.J., Dewitt, M.A., Mackley, V.A., Chang, K., Rao, A., Skinner, C. and Shobha, T., 2017. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nature biomedical engineering, 1(11), p.889.
53. Lhomme, L., Brosillon, S.T.E.P.H.A.N. and Wolbert, D., 2008. Photocatalytic degradation of pesticides in pure water and a commercial agricultural solution on TiO2 coated media. Chemosphere, 70(3), pp.381-386.
54. Li, S., Shen, Y., Xie, A., Yu, X., Zhang, X., Yang, L. and Li, C., 2007. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology, 18(40), p.405101.
55. Lombardo, D., Kiselev, M.A. and Caccamo, M.T., 2019. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019.
56. Long, C., Amoasii, L., Mireault, A.A., McAnally, J.R., Li, H., Sanchez-Ortiz, E., Bhattacharyya, S., Shelton, J.M., Bassel-Duby, R. and Olson, E.N., 2016. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science, 351(6271), pp.400-403.
57. Mir, S.A., Shah, M.A., Mir, M.M. and Iqbal, U., 2017. New horizons of nanotechnology in agriculture and food processing industry. In Integrating Biologically-Inspired Nanotechnology into Medical Practice (pp. 230-258). IGI Global.
58. Mishra, M., Dashora, K., Srivastava, A., Fasake, V.D. and Nag, R.H., 2019. Prospects, challenges and need for regulation of nanotechnology with special reference to India. Ecotoxicology and environmental safety, 171, pp.677-682.
59. Misra, A.N., Misra, M. and Singh, R., 2013. Nanotechnology in agriculture and food industry. International Journal of Pure and Applied Sciences and Technology, 16(2), p.1.
60. Nair, R., Poulose, A.C., Nagaoka, Y., Yoshida, Y., Maekawa, T. and Kumar, D.S., 2011. Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. Journal of fluorescence, 21(6), p.2057.
61. Nanda, A. and Saravanan, M., 2009. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine, 5(4), pp.452-456.
62. Nelson, C.E., Hakim, C.H., Ousterout, D.G., Thakore, P.I., Moreb, E.A., Rivera, R.M.C., Madhavan, S., Pan, X., Ran, F.A., Yan, W.X. and Asokan, A., 2016. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science, 351(6271), pp.403-407.
63. Nguyen-Tri, P., Tran, H.N., Plamondon, C.O., Tuduri, L., Vo, D.V.N., Nanda, S., Mishra, A., Chao, H.P. and Bajpai, A.K., 2019. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Progress in organic coatings, 132, pp.235-256.
64. Ni, M., Ma, W., Wang, X., Gao, M., Dai, Y., Wei, X., Zhang, L., Peng, Y., Chen, S., Ding, L. and Tian, Y., 2017. Next‐generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant biotechnology journal, 15(9), pp.1204-1213.
65. Oberdörster, G., 2010. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. Journal of internal medicine, 267(1), pp.89-105.
66. Omara, A.E.D., Elsakhawy, T., Alshaal, T., El-Ramady, H., Kovács, Z. and Fári, M., 2019. Nanoparticles: A Novel Approach for Sustainable Agro-productivity. Environment, Biodiversity and Soil Security, 3(2019), pp.29-62.
67. Othman, S.H., 2014. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agriculture and Agricultural Science Procedia, 2, pp.296-303.
68. Pehanich, M., 2006. Small gains in processing, packaging. Food Process, 11, pp.46-48.
69. Perfield Ii, J.W., Lock, A.L., Griinari, J.M., Sæbø, A., Delmonte, P., Dwyer, D.A. and Bauman, D.E., 2007. Trans-9, cis-11 conjugated linoleic acid reduces milk fat synthesis in lactating dairy cows. Journal of Dairy Science, 90(5), pp.2211-2218.
70. Popescu, M., Velea, A. and Lőrinczi, A., 2010. BIOGENIC PRODUCTION OF NANOPARTICLES. Digest Journal of Nanomaterials & Biostructures (DJNB), 5(4).
71. Pradhan, N., Singh, S., Ojha, N., Shrivastava, A., Barla, A., Rai, V. and Bose, S., 2015. Facets of nanotechnology as seen in food processing, packaging, and preservation industry. BioMed research international, 2015.
72. Prasad, R., Kumar, V. and Prasad, K.S., 2014. Nanotechnology in sustainable agriculture: present concerns and future aspects. African Journal of Biotechnology, 13(6), pp.705-713.
73. Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T., 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of plant nutrition, 35(6), pp.905-927.
74. Priya, M.M., Selvi, B.K. and Paul, J.A., 2011. Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Digest Journal of Nanomaterials & Biostructures (DJNB), 6(2).
75. Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N.K.U., Crawford, S. and Ashokkumar, M., 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. Journal of Nanoparticle Research, 11(7), p.1811.
76. Rai, M., Ingle, A.P., Gupta, I., Pandit, R., Paralikar, P., Gade, A., Chaud, M.V. and dos Santos, C.A., 2019. Smart nanopackaging for the enhancement of food shelf life. Environmental Chemistry Letters, 17(1), pp.277-290.
77. Rani, B., 2018. Evaluation of Nitrogenous Nano Fertilizer Under Incubation Trial and It’s Effect on Growth, Yield and Nutrient Uptake by Sorghum (Sorghum Bicolor L.) Crop 2548 (Doctoral Dissertation, Jau, Junagadh).
78. Rani, M., Shanker, U. and Jassal, V., 2017. Recent strategies for removal and degradation of persistent & toxic organochlorine pesticides using nanoparticles: a review. Journal of environmental management, 190, pp.208-222.
79. Rico, C.M., Lee, S.C., Rubenecia, R., Mukherjee, A., Hong, J., Peralta-Videa, J.R. and Gardea-Torresdey, J.L., 2014. Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.). Journal of agricultural and food chemistry, 62(40), pp.9669-9675.
80. Rizwan, M., Ali, S., Ali, B., Adrees, M., Arshad, M., Hussain, A., ur Rehman, M.Z. and Waris, A.A., 2019. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere, 214, pp.269-277.
81. Rohela, G.K., Srinivasulu, Y. and Rathore, M.S., 2019. A Review Paper on Recent Trends in Bio-nanotechnology: Implications and Potentials. Nanoscience & Nanotechnology-Asia, 9(1), pp.12-20.
82. Sabaghnia, N. and Janmohammadi, M., 2015. Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes/Wpływ nanocząstek krzemionki na tolerancję zasolenia we wczesnym rozwoju niektórych genotypów soczewicy. Annales UMCS, Biologia, 69(2), pp.39-55.
83. Saifuddin, N., Wong, C.W. and Yasumira, A.A., 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. Journal of Chemistry, 6(1), pp.61-70.
84. Sastry, M., Ahmad, A., Khan, M.I. and Kumar, R., 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Current science, 85(2), pp.162-170.
85. Sathyavathi, R., Krishna, M.B., Rao, S.V., Saritha, R. and Rao, D.N., 2010. Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Advanced science letters, 3(2), pp.138-143.
86. Sekhon, B.S., 2014. Nanotechnology in agri-food production: an overview. Nanotechnology, science and applications, 7, p.31.
87. Selvi, K.V. and Sivakumar, T., 2012. Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int. J. Curr. Microbiol. Appl. Sci, 1(1), pp.56-62.
88. Shankar, S.S., Ahmad, A. and Sastry, M., 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology progress, 19(6), pp.1627-1631.
89. Sharon, M., Choudhary, A.K. and Kumar, R., 2010. Nanotechnology in agricultural diseases and food safety. Journal of Phytology.
90. Shekhawat, G.S. and Arya, V., 2009. Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. In Advanced Materials Research (Vol. 67, pp. 295-299). Trans Tech Publications.
91. Shojaei, T.R., Salleh, M.A.M., Tabatabaei, M., Mobli, H., Aghbashlo, M., Rashid, S.A. and Tan, T., 2019. Applications of Nanotechnology and Carbon Nanoparticles in Agriculture. In Synthesis, Technology and Applications of Carbon Nanomaterials (pp. 247-277). Elsevier.
92. Shukla, P., Chaurasia, P., Younis, K., Qadri, O.S., Faridi, S.A. and Srivastava, G., 2019. Nanotechnology in sustainable agriculture: Studies from seed priming to post-harvest management. Nanotechnology for Environmental Engineering, 4(1), p.11.
93. Singh, S., Tripathi, D.K., Dubey, N.K. and Chauhan, D.K., 2016. Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Materials Focus, 5(3), pp.195-201.
94. Sintubin, L., De Windt, W., Dick, J., Mast, J., van der Ha, D., Verstraete, W. and Boon, N., 2009. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 84(4), pp.741-749.
95. Solanki, P., Bhargava, A., Chhipa, H., Jain, N. and Panwar, J., 2015. Nano-fertilizers and their smart delivery system. In Nanotechnologies in food and agriculture (pp. 81-101). Springer, Cham.
96. Sunkar, S. and Nachiyar, C.V., 2012. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pacific Journal of Tropical Biomedicine, 2(12), pp.953-959.
97. Tabebordbar, M., Zhu, K., Cheng, J.K., Chew, W.L., Widrick, J.J., Yan, W.X., Maesner, C., Wu, E.Y., Xiao, R., Ran, F.A. and Cong, L., 2016. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science, 351(6271), pp.407-411.
98. Thakkar, K.N., Mhatre, S.S. and Parikh, R.Y., 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology and medicine, 6(2), pp.257-262.
99. The World Bank. (2018). (15, 1, 2018).
100. Thirumurugan, A., Jiflin, G.J., Rajagomathi, G., Tomy, N.A., Ramachandran, S. and Jaiganesh, R., 2010. Biotechnological synthesis of gold nanoparticles of Azadirachta indica leaf extract. Internat J Biol Technol, 1, pp.75-77.
101. Tian, J., Zhao, Z., Kumar, A., Boughton, R.I. and Liu, H., 2014. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 43(20), pp.6920-6937.
102. Torres-Sangiao, E., Holban, A. and Gestal, M., 2016. Advanced nanobiomaterials: vaccines, diagnosis and treatment of infectious diseases. Molecules, 21(7), p.867.
103. Tripathy, A., Raichur, A.M., Chandrasekaran, N., Prathna, T.C. and Mukherjee, A., 2010. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12(1), pp.237-246.
104. Ulbrich, K., Hola, K., Subr, V., Bakandritsos, A., Tucek, J. and Zboril, R., 2016. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chemical reviews, 116(9), pp.5338-5431.
105. Verma, M.L., Barrow, C.J. and Puri, M., 2013. Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Applied microbiology and biotechnology, 97(1), pp.23-39.
106. Vidhyalakshmi, R., Bhakyaraj, R. and Subhasree, R.S., 2009. Encapsulation “the future of probiotics”-a review. Adv Biol Res, 3(3-4), pp.96-103.
107. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V., Nachane, R.P., Paralikar, K.M. and Balasubramanya, R.H., 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials letters, 61(6), pp.1413-1418.
108. Villagarcia, H., Dervishi, E., de Silva, K., Biris, A.S. and Khodakovskaya, M.V., 2012. Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. Small, 8(15), pp.2328-2334.
109. Wakihara, T., Ichikawa, R., Tatami, J., Endo, A., Yoshida, K., Sasaki, Y., Komeya, K. and Meguro, T., 2011. Bead-milling and postmilling recrystallization: an organic template-free methodology for the production of nano-zeolites. Crystal Growth & Design, 11(4), pp.955-958.
110. Wang, Q., Ma, X., Zhang, W., Pei, H. and Chen, Y., 2012. The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics, 4(10), pp.1105-1112.
111. Wang, X., Jiang, Y., Wang, Y.W., Huang, M.T., Ho, C.T. and Huang, Q., 2008. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chemistry, 108(2), pp.419-424.
112. Williamson, B., Tudzynski, B., Tudzynski, P. and van Kan, J.A., 2007. Botrytis cinerea: the cause of grey mould disease. Molecular plant pathology, 8(5), pp.561-580.
113. Wilson, M.A., Tran, N.H., Milev, A.S., Kannangara, G.K., Volk, H. and Lu, G.M., 2008. Nanomaterials in soils. Geoderma, 146(1-2), pp.291-302.
114. Yadav, S., Irfan, M., Ahmad, A. and Hayat, S., 2011. Causes of salinity and plant manifestations to salt stress: a review. Journal of Environmental Biology, 32(5), p.667.
115. Yavuz, C.T., Mayo, J.T., William, W.Y., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M. and Natelson, D., 2006. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. science, 314(5801), pp.964-967.
116. Zeng, X., Li, X., Xing, L., Liu, X., Luo, S., Wei, W., Kong, B. and Li, Y., 2009. Electrodeposition of chitosan–ionic liquid–glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing. Biosensors and Bioelectronics, 24(9), pp.2898-2903.
117. Zhang, X.F., Dong, X.L., Huang, H., Lv, B., Lei, J.P. and Choi, C.J., 2007. Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. Journal of Physics D: Applied Physics, 40(17), p.5383.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)

CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.