Recent developments and advances in Ti/TiO2-NTs/PbO2 electrodes:A general Review of their controllable preparation and application in wastwater treatment

Recent developments and advances in Ti/TiO2-NTs/PbO2 electrodes:A general Review of their controllable preparation and application in wastwater treatment

FuQiang Wei, Chao Hu, Bo Wang, JiaQi Ju, HeYing Chen, Ying Wang

College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.

American Journal of Basic and Applied Sciences

Ti/TiO2-NTs(nanotubes)/PbO2 is a new composite electrode material,which has been considered as an optimal electrode material for electrochemical oxidation of organic contaminants in the aquatic environmentthat due to its its good physical and chemical properties,such as good electrocatalytic activity, high oxygen evolution potential, corrosion resistance, good stability, environmental friendliness and simple preparation. The fundamental research and practical application of Ti/ TiO2-NTs(nanotubes)/PbO2 electrodes in the mineralization of organic pollutants have been well developed up to now. So this paper mainly reviews the preparation methods of Ti/TiO2-NTs/ PbO2 electrodes and the structural characterization methods of electrode materials first. And then, the basic principle of electrocatalytic oxidation will be introduced in detail and the application of this electrodes in water treatment is going to be summarized systematically. Further, we also proposed the existing problems in recent research and the potential development direction of electrocatalytic water treatment technology in the future, which could provide reference for the follow-up research.

Keywords:  PbO2; Ti /TiO2-NTs electrodes; Electrochemical oxidation; Wastewater treatment

Free Full-text PDF

How to cite this article:
FuQiang Wei, Chao Hu, Bo Wang, Jia- Qi Ju, HeYing Chen, Ying Wang. Rec-ent developments and advances in Ti/TiO2-NTs/PbO2 electrodes: A general Review of their controllable preparation and application in wastwater treatment. American Journal of Basic and Applied Sciences, 2019, 2:12. DOI:10.28933/ajbsa-2019-05-1905


1. Wu W, Huang ZH, Lim TT. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Applied Catalysis A: General. 2014, 480: 58-78.
2. Zhu DL, Liu SM, Yang Q. Research progress of electrochemical catalytic degradation of organic wastewater[J]. Modern Chemical Industry, 2016,3 6(12): 38-41+43.
3. Zhao YY, Wang DJ, Zhao CC. Progress in electrode materials for refractory wastewater treatment by electro-catalytic oxidation[J]. Materials Review, 2019, 33(07): 1125-1132.
4. Feng YJ, Liu JF, Cui YH. Environmental electro-catalytic electrode-structure, properties and preparation[M]. Science press, 2010: 377
5. Mukimin A, Vistanty H, Zen N. Oxidation of textile wastewater using cylinder Ti/β-PbO2 electrode in electrocatalytic tube reactor[J]. Chem Eng J.2015, 259:430-7.
6. Wu ZF, Cui ZJ. The Preparation and performance analysis of new type Ti/PbO2 electrode[J]. Technology of Water Treatment, 2012, 38(03): 30-33.
7. Song S, Fan JQ, He ZQ, et al. Electrochemical degradation of azo dye C.I. reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes[ J]. Electrochimica Acta, 2010, 55: 3603-3613.
8. Amadelli R, Samiolo L, Battisti AD, Velichenko AB. Electro-oxidation of Some Phenolic Compounds by Electrogenerated O3 and by Direct Electrolysis at PbO2 Anodes[J]. J Electrochem Soc.2011,158 (7).
9. Han W, Chen Y, Wang L, Sun X, Li J. Mechanism and kinetics of electrochemical degradation of isothiazolin-ones using Ti/SnO2–Sb/PbO2 anode[ J]. Desalination. 2011, 276(1-3): 82-8.
10. Song S, Zhan L, He Z, Lin L, Tu J, Zhang Z, et al. Mechanism of the anodic oxidation of 4-chloro-3-methyl phenol in aqueous solution using Ti/Sn O2-Sb/PbO2 electrodes[J]. J Hazard Mater. 2010, 175(1-3): 614-21.
11. Carr J P, Hampson N A. Lead dioxide electrode[J]. Chemical Reviews, 1972, 72(6):679-703.
12. Abaci S, Tamer U, Pekmez K, Yildiz A. Performance of different crystal structures of PbO2 on electrochemical degradation of phenol in aqueous solution[J]. Applied Surface Science. 2005,240 (1-4): 112-9.
13. [13] Saez V, Esclapez MD, Frias-Ferrer AJ, Bone-te P, Tudela I, Diez-Garcia MI, et al. Lead dioxide film song electrodeposition in acidic media: Preparation and performance of stable practical an-odes[J]. Ultrason Sonochem. 2011, 18(4):873-80.
14. Feng YJ, Sheng H, Cui YH, Liu JF. Preparation and evaluation on the electro-catalytic characteristics of Ti-base lead dioxide electrode[J]. Journal of Molecular Catalysis (China), 2002(03):181-186.
15. Zhu X, Ni J, Li H, Jiang Y, Xing X, Borthwick AGL. Effects of ultrasound on electrochemical oxidation mechanisms of p-substituted phenols at BDD and PbO2 anodes[J]. Electrochimica Acta. 2010,55(20) 5: 5569-75.
16. Wang ZN, Li MY, Guo Y, Liang DD, Liu SM. Research progress of preparation and application of nano-TiO2 [J]. China Ceramics Industry, 2018, 25(02): 20-25.
17. Tao L, Xiong Y, Liu H, Shen W. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays[J]. Nanoscale. 2014,6(2):931-8.
18. Hod I, González-Pedro V, Tachan Z, Fabregat-Santiago F, Mora-Seró I, Bisquert J, et al. Dye versus quantum dots in sensitized Solar Cells: Participation of quantum dot absorber in the re-combination process[J]. The Journal of Physical Chemistry Letters. 2011,2(24):3032-5.
19. Hod I, Zaban A. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects[J]. Langmuir. 2014,30(25): 7264-73.
20. Huang C, Chen L. Preparation and doping of TiO2 nanotubes[J]. Guangdong Chemical Industry, 2014, 41(09): 85-86+92.
21. KSAUGA T, HIRAMATSU M, HOSON A, et al. Formation of titanium oxide nanotube[J]. Langmuir, 1998, 14(12): 3160—3163.
22. Song JJ. Preparation and Catalytic properties of modified TiO2 nanotubes[D]. Tian Jin: Nankai University, 2013.
23. Liu D, Jiang SQ, Wang G. Study progress on preparation and modification of TiO2 nanotube Array [J]. Surface Technology, 2017, 46(04): 71-78.
24. Liu RB, Liu CH, Xiao Z, Bi S, Hou GL. Preparation and morphology control of TiO2 nanorod arrays[J]. Modern Chemical Industry, 2019, 39(04):108-111 +113.
25. Deng ZH, Jin Y, Zuo ZH. Design of comprehensive experiment on synthesis of anatase-TiO2 by hydrothermal method[J]. Experimental Technology and Management, 2019, 36(01):84-88.
26. Zhang PJ, Qin LH, Zhang YF, Wang JF. Preparation of {001} facets-dominated TiO2 by hydro-thermal synthesis[J]. Computers and Applied Chemistry, 2018, 35(05): 385-389.
27. Lv M, Zheng D, Ye M, Xiao J, Guo W, Lai Y, et al. Optimized porous rutile TiO2 nanorod arrays for enhancing the efficiency of dye-sensitized solar cells[J]. Energy & Environmental Science. 2013,6(5).
28. Fu M, Yuan XX, Ma ZF. Research progress on the preparation and application of titania nanotube[J]. Chemical industry and engineering progress, 2005(01): 42-46.
29. Yang M, Ding B, Lee S, Lee J-K. Carrier transport in dye-sensitized solar cells using single crystal-line TiO2 nanorods grown by a microwave-assist-ed hydrothermal reaction[J]. The Journal of phy-sical chemistry C. 2011, 115(30): 14534-41.
30. Pan F, Zhang W, Zhang D. Research and ad-vance in template–assisted synthesis of TiO2[J]. Materials Review, 2015, 29(01): 22-30.
31. Hoyer P. Formation of a titanium dioxide nano-tube array[J]. Langmuir, 1996, 12: 1411-1413.
32. Zhang HC. Templated preparation and photoluminescence of composite structure TiO2 nano-tube arrays[D]. Shanghai University, 2014.
33. Nguyen Thanhdong, Wang W, Long HB, Ru HQ. Preparation of mesoporous TiO2 with bi – crystallinity via soft – templating approach from peroxo titanic acid[J]. Journal of Materials and Metal-lurgy, 2016, 15(01): 53-57.
34. Li XD, Fu L, Liu HL, Wang Y, Wen AH. et al. Template synthesis and the properties of three-dimensional chrysanthemum-like TiO2 nanoflowers[J]. Journal of Harbin institute of technology, 2014, 46(02): 55-60.
35. Liu CF, Huang CP, Hu CC, Huang C. A dual TiO2/ /Ti-stainless steel anode for the degradation of orange G in a coupling photoelectrochemical and photo-electro-Fenton system[J]. Sci Total Environ. 2019, 659: 221-9.
36. Wang YG, Zhou Bo. Experimental Factors on Preparation of Ordered TiO2 nanotubes by Anodic Oxidation[J]. Journal of Shenyang University (Natural Science), 2017, 29(04): 265-270+293.
37. Liu D, Jisng SQ, Wang G, Zhang QZ. Effects of anodic oxidation process on morphologies of TiO2 nanotube arrays[J]. China Surface Engineering, 2017, 30(06): 67-74.
38. Zou JP, Tang NX, Li HC, Yang HZ, Xiao P. et al. Growing characteristics of TiO2 nanotube array prepared by anodization method[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(02):337 -346.
39. Du JJ, Xi YM, Zhao JW, Chen XM, Wang KS. Influence of electrolyte on the morphology and photocatalytic property of TiO2 nanotube array[J]. New Chemical Materials, 2016, 44(04): 146-148.
40. Li L, Zhang K, Li HL, Wu L, Feng J. et al. Effect of anodic oxidation conditions on the formation of through-hole TiO2 nanotube array membranes[J]. Journal of Wuhan University of Technology, 2016, 38(07): 8-13.
41. Wang J. Freestanding TiO2 nanotube arrays with ultrahigh aspect ratio via electrochemical anodization[J]. Chemistry of Materials, 2008, 20, 1257– 1261
42. Yeonmi S. Self-orgnized regular arrays of anodic TiO2 nanotubes[J]. Nano Letters. 2008,8(10):317 1-3173
43. Li XX, Liu J, Fu DG. Effect of two-step anodization on structure and photoelectric performance of TiO2 nanotube arrays[J]. Journal of Synthetic Crystals, 2015, 44(11): 3124-3128.
44. Xiao TX. TiO2 nanotube arrays with regular structure prepared by improved two-step anodic oxidation[J]. New Chemical Materials, 2017, 45(12): 93-95+99.
45. Xie YN, Ma ZM, Shi YB, Tang J,Wang F. et al. Photocatalytic Properties of ordered TiO2 nano-tubes Arrays[J]. Micronanoelectronic Technology, 2016, 53(03): 156-160.
46. Ferreira M, Pinto MF, Neves IC, Fonseca AM, Soares OSGP. et al. Electrochemical oxidation of aniline at mono and bimetallic electrocatalysts supported on carbon nanotubes[J]. Chem Eng J. 2015,260:309-15.
47. Duan XY,Liu W, Ru L, Chang LM. Preparation and electro-catalytic properties of PbO2/TiO2-NT /Ti electrode[J]. Acta Scientiae Circumstantiae, 2016, 36(09): 3237-3242.
48. Wang CY. The modification of lead dioxide and its electrocatalytic application research[D]. Anhui University, 2016.
49. Sha HX. Effect of preparation method on the structure and properties of lead dioxide electrode[D]. Yangzhou University, 2008.
50. Liu N, Wang L, Wu D, Mi R, Quan FJ. et al. Comparison of electro-catalytic characteristics of the lead dioxide electrode with different coats [J].Journal of Jilin University ( Earth Science Edition), 2006(S1): 133-137.
51. Sun PZ. Research progress on new lead dioxide electrode[J]. Guangzhou chemical industry, 2018, 46(20): 24-26.
52. Cao CQ. Preparation and modification of beta -PbO2 electrode by high pressure plastic sheet [A].Shanghai chemical industry association. Abstract collection of papers in 2007 annual academic conference of Shanghai chemical and chemical society[C]. Shanghai chemical industry associa-tion: Shanghai chemical industry association, 2007: 3.
53. Zhang C,Wang JQ. Treatment of dye wastewater by a new lead dioxide electrode[J]. Chinese Jour-nal of Environmental Engineering, 2014, 8(06): 2283-2292.
54. Yang Y,Cui LL,Li Y, Yao NW. Preparation and photoelectrocatalytic properties of PbO2-TiO2 nanocomposite Electrode [J]. Plating and Finishing, 2018, 40(11): 42-46.
55. Wang L. Preparation of high performance lead dioxide electrodes and its electro-oxidation degradation of organic wastewater[D]. Xi`an University of Architecture and Technology, 2017.
56. Li CG. Modified preparation of titanium-base Pb-O2 electrodes for electrochemical oxidation degradation of organic wastewater[D]. Xi`an University of Architecture and Technology, 2017.
57. Yao Y, Li M, Yang Y, Cui L, Guo L. Electrochemi-cal degradation of insecticide hexazinone with Bi-doped PbO2 electrode: Influencing factors,in-termediates  and degradation mechanism[J]. Ch-emosphere. 2019, 216: 812-22.
58. Mao YL, Zhang X, Xu M, Wang FW, Wang ZC, Fang WY. et al. Preparation of Ti/TiO2 nanotube arrays /PbO2-Pr electrode and its application in electrocatalytic degradation of organic wastewa-ter[J]. Chinese Journal of Applied Chemistry, 2018, 35(05): 582-588.
59. Chen Y, Jin BJ, Chen BM, Guo ZC. Effect of Ce-rium doping on electrocatalytlc activity and elec-trolysis lifetime of lead dioxide – titanium epoxide anode on titanium substrate[J]. Journal of Mate-rials Protection, 2015, 48(04): 16-18+7.
60. Boukhchina S, Akrout H, Berling D, Bousselmi L.Highly efficient modified lead oxide electrode us-ing a spin coating/electrodeposition mode on ti-tanium for electrochemical treatment of pharma-ceutical pollutant[J]. Chemosphere. 2019, 221: 356-65.
61. Wang C, Wang F, Xu M, Zhu C, Fang W, Wei Y. Electrocatalytic degradation of methylene blue on Co doped Ti/TiO2 nanotube/PbO2 anodes pre-pared by pulse electrodeposition[J]. Journal of Electroanalytical Chemistry. 2015, 759: 158-66.
62. [Wang YJ. Preparation and research of titanium-substrated lead dioxide electrode for simulated
electrocatalytic dye wastewater treatment[D]. Ha-rbin Engineering University, 2016.
63. Chen Z, Zhang Y, Zhou L, Zhu H, Wan F, Wang Y, et al. Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic ox-idation of simulated Bisphenol A wastewaters[J]. J Hazard Mater. 2017,332:70-8.
64. Wu W, Huang ZH, Lim TT. Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water[J]. Applied Catalysis A: General, 2014, 480, 58.
65. Yan L, Ma H, Wang B, Wang Y, Chen Y. Electro-chemical treatment of petroleum refinery waste-water with three-dimensional multi-phase elec-trode[J]. Desalination. 2011, 276(1-3): 397-402.
66. Garcia-Segura S, Ocon JD, Chong MN. Electro-chemical oxidation remediation of real wastewa-ter effluents -A review[J]. Process Safety and En-vironmental Protection. 2018, 113: 48-67.
67. Moreira FC, Boaventura RAR, Brillas E, Vilar VJP. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environ-mental. 2017, 202: 217-61.
68. M. Panizza, G. Cerisola, Direct and mediated anodic oxidation of organic Pollutants[J]. Chem. Rev. 109 (2009) 6541–6569.
69. Szpyrkowicz L, Kaul SN, Neti RN, Satyanarayan S. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewat-ter[J]. Water Res. 2005, 39(8): 1601-13.
70. Szpyrkowicz L, Radaelli M, Daniele S. Electro-catalysis of chlorine evolution on different materi-als and its influence on the performance of an electrochemical reactor for indirect oxidation of pollutants[J]. Catal Today. 2005, 100(3-4): 425-9.
71. Deborde M, von Gunten U. Reactions of chlorine with inorganic and organic compounds during wa-ter treatment-Kinetics and mechanisms: a critical review[J]. Water Res. 2008, 42(1-2): 13-51.
72. de Moura DC, de Araújo CKC, Zanta CLPS, Sal-azar R, Martínez-Huitle CA. Active chlorine spe-cies electrogenerated on Ti/Ru0.3Ti0.7O2 surface: Electrochemical behavior, concentration deter-mination and their application[J]. Journal of Elec-troanalytical Chemistry. 2014, 731: 145-52.
73. Martínez-Huitle CA, Brillas E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B: Environmental. 2009,87(3-4): 105-45.
74. Thanos JC, Fritz HP, Wabner D. The Influences of the Electrolyte and the Physical Conditions on Ozone Production by the Electrolysis of Water. Journal of Applied Electrochemistry, 1984, 14(3): 389-399P
75. Hong P, Wang FW, Xu M, Wei L, Fang WY. et al. Preparation of β-PbO2 /TiO2 nanotube arrays ele-ctrode and electrocatalytic degradation of phe-nol[J].Chinese Journal of Applied Chemistry, 2014, 31(09): 1096-1100.
76. Wang TN, Zu G, Yang L, Cai YT, Li B. Research progress on printing and dyeing wastewater at home and abroad[J]. Environmental Protection and Circular Economy, 2015, 35(04): 28-31.
77. Moura DCD, Quiroz MA, Silva DRd, Salazar R, Martínez-Huitle CA. Electrochemical degradation of Acid Blue 113 dye using TiO2 -nanotubes dec-orated with PbO2 as anode[J]. Environmental Nanotechnology, Monitoring & Management. 2016, 5: 13-20.
78. Wu J, Zhu K, Xu H,Yan W. Electrochemical oxi-dation of rhodamine B by PbO2/Sb-SnO2/TiO2 nanotube arrays electrode[J]. Chinese Journal of Catalysis, 2019, 40: 917-927.
79. Chen Y, Li H, Liu W, Tu Y, Zhang Y, Han W, et al. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/Sn O2-Sb/PbO2 electrode[J]. Chemosphere. 2014, 113: 48-55.
80. Yin XD, Chen Y, Lin QQ. Study on Treatment of Reverse Osmosis Concentrate by TiO2 Nano-tubes Modified Electrode[J]. Environmental Sci-ence and Technology, 2014, 27(05): 1-4+31.
81. Li JX, Chen Y,Han HJ, Chen ZQ. Preparation of Ti-based PbO2 Electrode and Electrocatalytic Oxidation of Coal Chemical Wastewater [J]. Chi-na Water & Wastwater, 2019, 35(03): 111-116.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).

This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.