ROLE OF MESENCHYMAL STEM CELLS IN CARDIOVASCULAR DISEASE


ROLE OF MESENCHYMAL STEM CELLS IN CARDIOVASCULAR DISEASE


Dr. Vikram Aiman Ayapathi1, Dr. Ayapati Gautam Mehdi1, Wajeeda Tabassum1, Dr. Aleem Ahmed Khan2*, Dr. Roya Rozati3

1Research Scholar, Maternal Health and Research Trust(MHRT), Banjara Hills,Hyderabad-34, India. 2Scientist, Central Research Laboratory, CLRD, Deccan College of Medical Sciences, Owaisi Hospital & Research Centre Kanchanbagh, Hyderabad 500058, Telangana, India. 3MD (A.I.I.M.S, Delhi), F.R.C.O.G.(London), Professor and Head,Dept of Obst &Gynecology, Shadan Institute of Medical Sciences, Member Secretary, Maternal Health and Research Trust(MHRT), Banjara Hills,Hyderabad-34, India.


In recent years, globally there is an incredible boost in stem cell research has kindled the expectations of both patients and physicians. Mesenchymal stem cells (MSCs) seem to represent a future powerful tool in regenerative medicine, owing to their availability, ease of manipulation, and therapeutic potential, therefore they are particularly important in medical research. Mesenchymal stem cells (MSCs) are capable self-renewing, multipotent progenitor cells with multilineage potential to differentiate into cell types, such as adipocytes, cardiomyocytes, endothelial cells and vascular smooth muscle cells, although the relative contribution of trilineage differentiation and paracrine effectors on cardiac repair. MSCs shows to have the beneficial effects of MSC-based therapies offers most attractive options to treatment of wide range of diseases from cartilage defects to cardiac disorders. Cardiovascular diseases (CVDs) are an important cause of death and disease worldwide. Because injured cardiac tissue cannot be repaired itself, it is urgent to develop other alternate therapies. Stem cells can be differentiated into cardiomyocytes, endothelial cells, and vascular smooth muscle cells for the treatment of CVDs. In addition to cardiac stem cells, mesenchymal stem cells represent another multipotent cell population in the heart; these cells are located in regions near pericytes and exhibit regenerative, angiogenic, antiapoptotic, and immunosuppressive properties.


Keywords: Adult stem cells(ASc), tissue-specific resident stem cells (TSCs), Mesenchymal stromal cells (MSCs), Induced pluripotent stem cells (iPSCs) Embryonic stem cells (ESCs) Heart Failure (HF)

Free Full-text PDF


How to cite this article:
Vikram Aiman Ayapathi, Ayapati Gautam Mehdi, Wajeeda Taba -ssum, Aleem Ahmed Khan, Roya Rozati. Role of Mesenchymal Stem Cells in Cardiovascular Disease.American Journal of Cardiology Research and Reviews, 2021, 4:13. DOI:10.28933/ajcrar-2021-10-1206


References:
1. Moyer AL, Wagner KR. Regeneration versus fibrosis in skeletal muscle. CurrOpinRheumatol. 2011, 1;23(6):568-73. http://doi.org/10.1097/BOR.0b013e32834bac92
2. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002 Jul;418(6893):41-9. http://doi.org/10.1038/nature00870
3. Friedenstein AJ, Chailakhjan RK, Lalykina K. The development of fibroblast colonies in monolayer cultures of guinea‐pig bone marrow and spleen cells. Cell Tissue Kinet1970 Oct;3(4):393-403.http://doi.org/ 10.1111/j.1365-2184. 1970.tb00347.x.
4. Dominici ML, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
5. Meirelles LD, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 2006 Jun 1;119(Pt 11):2204-13.http://doi.org/ 10.1242/jcs.02932.
6. Paunescu V, Deak E, Herman D, Siska IR, T˘ anasie G, Bunu C, Anghel S, Tatu CA, Oprea TI, Henschler R, Rüster B. In vitro differentiation of human mesenchymal stem cells to epithelial lineage. J Cell Mol Med May-Jun 2007;11(3):502-8.. http://doi.org/10.1111/j.1582-4934.2007.00041.x
7. Quevedo HC, Hatzistergos KE, Oskouei BN, Feigenbaum GS, Rodriguez JE, Valdes D, Pattany PM, Zambrano JP, Hu Q, McNiece I, Heldman AW. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14022-7. http://doi.org/10.1073/pnas.0903201106.
8. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, Brône B, Lambrichts I, Martens W. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015 Feb 1;24(3):296-311. http://doi.org/ 10.1089/scd.2014.0117
9. Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018 Jun 1;22(6):824-833.http://doi.org/ 10.1016/j.stem.2018.05.004.
10. Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2020 Feb;60:225-237
11. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: a promising candidate in regenerative medicine. The international journal of biochemistry & cell biology. 2008 Jan 1;40(5):815-20. http://doi.org/ 10.1016/j.semcancer.2019.06.003.
12. Dai LJ, Moniri MR, Zeng ZR, Zhou JX, Rayat J, Warnock GL. Potential implications of mesenchymal stem cells in cancer therapy. Cancer Lett. 2011 Jun 1;305(1):8-20.http://doi.org/ 10.1016/j.canlet.2011.02.012.
13. Nesti LJ, Jackson WM, Shanti RM, Koehler SM, Aragon AB, Bailey JR, Sracic MK, Freedman BA, Giuliani JR, Tuan RS. Differentiation potential of multipotent progenitor cells derived from war-traumatized muscle tissue. J Bone Joint Surg Am. 2008;90:2390-8. http://doi.org/10.2106/jbjs.h.00049
14. Jackson WM, Aragon AB, Bulken‐Hoover JD, Nesti LJ, Tuan RS. Putative heterotopic ossification progenitor cells derived from traumatized muscle. J Orthop Res. 2009 December ; 27(12): 1645–1651. http://doi.org/10.1002/jor.20924
15. Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019 Dec 2;4:22. http://doi.org/10.1038/s41536-019-0083-6
16. Caplan AI. Mesenchymal stem cells: cell–based reconstructive therapy in orthopedics. Tissue Eng. Jul-Aug 2005;11(7-8):1198-21. http://doi.org/ 10.1089/ten.2005.11.1198.
17. Zuk PA, Zhu MI, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001 Apr;7(2):211-28.://doi.org/ 10.1089/107632701300062859
18. De Coppi P, Callegari A, Chiavegato A, Gasparotto L, Piccoli M, Taiani J, Pozzobon M, Boldrin L, Okabe M, Cozzi E, Atala A. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol. 2007 Jan;177(1):369-7. http://doi.org/ 10.1016/j.juro.2006.09.103.
19. Anker PS, Scherjon SA, Kleijburg‐van der Keur C, de Groot‐Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem cells. 2004 Dec;22(7):1338-45.http://doi.org/ 10.1634/stemcells.2004-0058.
20. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004 Mar 1;103(5):1669-75. http://doi.org/10.1182/blood-2003-05-1670
21. Bieback K, Kern S, Klüter H, Eichler H. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem cells. 2004 Jul;22(4):625-34. http://doi.org/ 10.1634/stemcells.22-4-625.
22. Limbert C, Ebert R, Schilling T, Path G, Benisch P, Klein-Hitpass L, Seufert J, Jakob F. Functional signature of human islet-derived precursor cells compared to bone marrow-derived mesenchymal stem cells. Stem Cells Dev. 2010 May;19(5):679-91. http://doi.org/ 10.1089/scd.2009.0241.
23. Covas DT, Panepucci RA, Fontes AM, Silva Jr WA, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol. 2008 May;36(5):642-54. http://doi.org/10.1016/j.exphem.2007.12.015
24. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring HJ, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T. Concise review: isolation and characterization of cells from human term placenta: outcome of the first international Workshop on Placenta Derived Stem Cells. Stem cells. 2008 Feb;26(2):300-11. http://doi.org/10.1634/stemcells.2007-0594.
25. Pilz GA, Ulrich C, Ruh M, Abele H, Schäfer R, Kluba T, Bühring HJ, Rolauffs B, Aicher WK. Human term placenta-derived mesenchymal stromal cells are less prone to osteogenic differentiation than bone marrow-derived mesenchymal stromal cells. Stem Cells Dev. 2011 Apr;20(4):635-46.http://doi.org/ 10.1089/scd.2010.0308
26. Fibbe WE, Noort WA. Mesenchymal stem cells and hematopoietic stem cell transplantation. Ann N Y Acad Sci. 2003 May;996:235-44. http://doi.org/10.1111/j.1749-6632.2003.tb03252.x
27. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem cells. 2004 Dec;22(7):1330-7. http://doi.org/ 10.1634/stemcells.2004-0013.
28. Musialek P, Mazurek A, Jarocha D, Tekieli L, Szot W, Kostkiewicz M, Banys RP, Urbanczyk M, Kadzielski A, Trystula M, Kijowski J. Myocardial regeneration strategy using Wharton’s jelly mesenchymal stem cells as an off-the-shelf ‘unlimited’therapeutic agent: results from the Acute Myocardial Infarction First-in-Man Study. PostepyKardiolInterwencyjnej. 2015;11(2):100-7. http://doi.org/ 10.5114/pwki.2015.52282
29. Ayatollahi M, Talaei-Khozani T, Razmkhah M. Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton’s jelly of umbilical cord on PBMCs. Iran J Basic Med Sci 2016;19:145–153.
30. Karaöz E, Demircan PÇ, Erman G, Güngörürler E, Sarıboyacı AE. Comparative analyses of immunosuppressive characteristics of bone-marrow, Wharton’s jelly, and adipose tissue-derived human mesenchymal stem cells. Turk J Haematol. 2017 Aug 2;34(3):213-225 . http://doi.org/ 10.4274/tjh.2016.0171
31. Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004 Mar 19;116(6):769-78. http://doi.org/ 10.1016/s0092-8674(04)00255-7
32. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther. 2014 Apr 16;5(2):53. http://doi.org/ 10.1186/scrt442.
33. Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Mesenchymal stromal cell proliferation, gene expression and protein production in human platelet-rich plasma-supplemented media. PloS one. 2014 Aug 12;9(8):e104662. http://doi.org/10.1371/journal.pone.0104662
34. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B. Resident cardiac stem cells. Cell Mol Life Sci. 2007 Mar;64(6):661-73http://doi.org/ 10.1007/s00018-007-6519-y
35. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, De Ferranti S, Després JP, Fullerton HJ, Howard VJ, Huffman MD. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015 Jan 27;131(4):e29-322. http://doi.org/10.1161/CIR.0000000000000152
36. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MS. Heart disease and stroke statistics—2021 update: a report from the American Heart AssociationCirculation.2021 Feb 23;143(8):e254-e743. http://doi.org/10.1161/CIR.0000000000000950
37. Ong SG, Wu JC. Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration.Circ Res. 2015 Jun 19;117(1):7-9 9. http://doi.org/10.1161/CIRCRESAHA.115.306593
38. Prathipati P, Nandi SS, Mishra PK. Stem cell-derived exosomes, autophagy, extracellular matrix turnover, and miRNAs in cardiac regeneration during stem cell therapy. Stem Cell Rev Rep. 2017 Feb;13(1):79-91.http://doi.org/ 10.1007/s12015-016-9696-y
39. Yuan MJ, Maghsoudi T, Wang T. Exosomes mediate the intercellular communication after myocardial infarction. International journal of medical sciences. 2016;13(2):113.http://doi.org/ 10.1161/CIRCRESAHA.115.306593.
40. Wang L, Zhou Y, Qian C, Wang Y. Clinical characteristics and improvement of the guideline-based management of acute myocardial infarction in China: a national retrospective analysis. Oncotarget. 2017 Jul 11;8(28):46540.http://doi.org/ 10.18632/oncotarget.14890.
41. Vatta M. Editorial Commentary: Reprogramming autologous mesenchymal stem cells to regenerate the lost myocardium in chronic heart failure: Reboot and restore? Trends Cardiovasc Med. 2016 Jul;26(5):405-6.. http://doi.org/ 10.1016/j.tcm.2016.02.001.
42. Joseph J. Needling the heart to rejuvenate: the promise of intramyocardial injection of bone marrow stem cells. J Heart Lung Transplant. 2014 Jun;33(6):565-6. http://doi.org/ 10.1016/j.healun.2014.02.029.
43. Li SH, Sun L, Yang L, Li J, Shao Z, Du GQ, Wu J, Weisel RD, Li RK. Young bone-marrow Sca-1+ stem cells rejuvenate the aged heart and improve function after injury through PDGFRβ-Akt pathway. Sci Rep. 2017 Jan 31;7:41756 .http://doi.org/10.1038/srep41756.
44. Li J, Li SH, Wu J, Weisel RD, Yao A, Stanford WL, Liu SM, Li RK. Young bone marrow Sca-1 cells rejuvenate the aged heart by promoting epithelial-to-mesenchymal transition. Theranostics. 2018 Feb 12;8(7):1766-1781.http://doi.org/10.7150/thno.22788
45. Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B, Conte JV. Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J. 2009 Nov;30(22):2722-32.http://doi.org/ 10.1093/eurheartj/ehp265
46. Silva GV, Litovsky S, Assad JA, Sousa AL, Martin BJ, Vela D, Coulter SC, Lin J, Ober J, Vaughn WK, Branco RV. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation. 2005 Jan 18;111(2):150-6. http://doi.org/10.1161/01.CIR.0000151812.86142.45
47. Ryzhov S, Sung BH, Zhang Q, Weaver A, Gumina RJ, Biaggioni I, Feoktistov I. Role of adenosine A 2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic signalling. 2014 Sep;10(3):477-86. http://doi.org/10.1007/s11302-014-9410-y.
48. Vecellio M, Meraviglia V, Nanni S, Barbuti A, Scavone A, DiFrancesco D, Farsetti A, Pompilio G, Colombo GI, Capogrossi MC, Gaetano C. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors. PloS one. 2012 Dec 17;7(12):e51694. http://doi.org/ 10.1371/journal.pone.0051694
49. Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK, Scarlett CJ, Rashidianfar A, Biben C. Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell stem cell. 2011 Dec 2;9(6):527-40. http://doi.org/10.1016/j.stem.2011.10.002.
50. Javazon EH, Beggs KJ, Flake AW. Mesenchymal stem cells: paradoxes of passaging. Experimental hematology. 2004 May 1;32(5):414-25.http://doi.org/10.1016/j.exphem.2004.02.004
51. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol. 2014 May 19;5:148.. http://doi.org/10.3389/fimmu.2014.00148
52. Barile L, Messina E, Giacomello A, Marbán E. Endogenous cardiac stem cells. Prog Cardiovasc Dis. Jul-Aug 2007;50(1):31-48. 2007 Jul 1;50(1):31-48.http://doi.org/ 10.1016/j.pcad.2007.03.005.
53. Ferreira-Martins J, Ogórek B, Cappetta D, Matsuda A, Signore S, D’Amario D, Kostyla J, Steadman E, Ide-Iwata N, Sanada F, Iaffaldano G. Cardiomyogenesis in the developing heart is regulated by c-kit–positive cardiac stem cells.Circ Res. 2012 Mar 2;110(5):701-15http://doi.org/ 10.1161/CIRCRESAHA.111.259507
54. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007 Feb;4 Suppl1:S21-6.http://doi.org/ 10.1038/ncpcardio0770.
55. Lovell MJ, Mathur A. Republished review: cardiac stem cell therapy: progress from the bench to bedside. Postgrad Med J. 2011 Aug;87(1030):558 http://doi.org/ 10.1136/pgmj.2009.192385rep.
56. Liu CB, Huang H, Sun P, Ma SZ, Liu AH, Xue J, Fu JH, Liang YQ, Liu B, Wu DY, Lü SH. Human umbilical cord‐derived mesenchymal stromal cells improve left ventricular function, perfusion, and remodeling in a porcine model of chronic myocardial ischemia. Stem Cells Transl Med. 2016 Aug;5(8):1004-13.http://doi.org/10.5966/sctm.2015-0298
57. Ozeki N, Muneta T, Koga H, Nakagawa Y, Mizuno M, Tsuji K, Mabuchi Y, Akazawa C, Kobayashi E, Matsumoto K, Futamura K. Not single but periodic injections of synovial mesenchymal stem cells maintain viable cells in knees and inhibit osteoarthritis progression in rats. Osteoarthritis Cartilage. 2016 Jun;24(6):1061-70 http://doi.org/10.1016/j.joca.2015.12.018
58. Capilla-González V, López-Beas J, Escacena N, Aguilera Y, de la Cuesta A, Ruiz-Salmerón R, Martín F, Hmadcha A, Soria B. PDGF restores the defective phenotype of adipose-derived mesenchymal stromal cells from diabetic patients. Mol Ther. 2018 Nov 7;26(11):2696-2709. http://doi.org/10.1016/j.ymthe.2018.08.011
59. Chau MJ, Deveau TC, Gu X, Kim YS, Xu Y, Yu SP, Wei L. Delayed and repeated intranasal delivery of bone marrow stromal cells increases regeneration and functional recovery after ischemic stroke in mice. BMC Neurosci2018 Apr 12;19(1):20.http://doi.org/ 10.1186/s12868-018-0418-z.
60. Řehořová M, Vargová I, Forostyak S, Vacková I, Turnovcová K, KupcováSkalníková H, Vodička P, Kubinová Š, Syková E, Jendelová P. A Combination of Intrathecal and Intramuscular Application of Human Mesenchymal Stem Cells Partly Reduces the Activation of Necroptosis in the Spinal Cord of SOD1G93A Rats. Stem Cells Transl Med.2019 Jun;8(6):535-547. http://doi.org/10.1002/sctm.18-0223
61. Soria B, Martin-Montalvo A, Aguilera Y, Mellado-Damas N, López-Beas J, Herrera-Herrera I, López E, Barcia JA, Alvarez-Dolado M, Hmadcha A, Capilla-González V. Human mesenchymal stem cells prevent neurological complications of radiotherapy. Frontiers in cellular neuroscience. 2019 May 16;13:204.http://doi.org/10.1002/sctm.18-0223
62. J Salgado A, L Reis R, Sousa N, M Gimble J. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Curr Stem Cell Res Ther. 2010 Jun;5(2):103-10.http://doi.org/ 10.2174/157488810791268564
63. Luo X, Wang H, Leighton J, O’Sullivan M, Wang P. Generation of endoderm lineages from pluripotent stem cells. Regen Med. 2017 Jan;12(1):77-89. http://doi.org/10.2217/rme-2016-0086
64. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114:763–776.http://doi.org/10.1016/s0092-8674(03)00687-1


Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)


CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.