FALL FROM GRASE: THE SUNSETTING OF THE SUNSCREEN INNOVATION ACT


Fall from GRASE: The Sunsetting of the Sunscreen Innovation Act


Joseph C DiNardo, MS1*, Craig A Downs, PhD2

1Retired Personal Care Products Industry Toxicologist; Vesuvius, Virginia, USA
2Executive Director; Haereticus Environmental Laboratory, Virginia, USA.


The 2020 Coronavirus Aid, Relief, and Economic Security (CARES) Act terminated the Sunscreen Innovation Act (SIA) that the Food & Drug Administration (FDA) uses to determine sunscreen actives as safe and effective for human use. The Act also nullified a recent FDA proposal that reclassified 14 organic sunscreen actives as either not safe for human use or requires more data before being used in humans. Most sunscreen actives were approved in 1978; since that time the FDA has determined that over the last 20 years several changes have occurred leading to a substantial increase in sunscreen usage and exposure that increases the potential health risks associated with their use. Based on the scientific literature for the actives reviewed, it is clear that the SIA is needed to assure that sunscreen and other over-the-counter drugs are safe and efficacious for human use prior to entering the marketplace.

#Haereticus Environmental Laboratory has received funding from the U.S. Environmental Protection Agency and the U.S. Department of Interior, but this funding did not contribute and is no way associated with this study.


Keywords: GRASE, Sunscreen Innovation Act

Free Full-text PDF


How to cite this article:
Joseph C DiNardo, Craig A Downs. Fall from GRASE: The Sunsetting of the Sunscreen Innovation Act. American Journal of Dermatological Research and Reviews, 2021, 4:39. DOI: 10.28933/ajodrr-2020-12-2805


References:

1. Alamer M, Darbre PD. Effects of exposure to six chemical ultraviolet filters commonly used in personal care products on motility of MCF-7 and MDA-MB-231 human breast cancer cells in vitro. J Appl Toxicol. 2018;38:148-159, DOI: 10.1002/jat.3525.
2. Amar SK, Goyal S, Mujtaba SF, Dwivedi A, Kushwaha HN, Verma A, Chopra D, et al. Role of type I & type II reactions in DNA damage and ac-tivation of caspase 3 via mitochondrial pathway induced by photosensitized benzophenone. Tox-icol Lett. 2015;235:84-95, DOI: 10.1016/j.toxlet.2015.03.008.
3. Australia Institute of Health and Welfare Cancer in Australia 2019.
4. https://www.aihw.gov.au/getmedia/8c9fcf52-0055-41a0-96d9-f81b0feb98cf/aihw-can-123.pdf.aspx?inline=true. Accessed October 20, 2020.
5. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000; 9:165-69. DOI: 10.1034/j.1600-0625.2000.009003165.x.
6. Bronaugh R, Wester RC, Bucks D, Maibach HI, Sarason R. In vivo percutaneous absorption of fragrance ingredients in rhesus monkeys and humans. Food Chem Toxicol. 1990;28(5):368-373, https://doi.org/10.1016/0278-6915(90)90111-Y.
7. Buck Louis GM, Kannan K, Sapra KJ, Maisog J, Sundaram R. Urinary concentrations of benzo-phenone-type ultraviolet radiation filters and couples’ fecundity. Am J Epidemiol. 2014;180:1168-75, DOI: 10.1093/aje/kwu285.
8. California Office of Environmental Health Hazard Assessment 2012. Benzophenone. https://oehha.ca.gov/proposition-65/chemicals/benzophenone. Accessed October 19, 2020.
9. Carve M, Nugegoda, D, Allinson, G, Shimeta, J, A systematic review and ecological risk assess-ment for organic ultraviolet filters in aquatic envi-ronments. Environ Pollut. 2020;268(Pt B):115894, https://doi.org/10.1016/j.envpol.2020.115894.
10. Congress.gov 2020. H.R. 748 – Coronavirus Aid, Relief, and Economic Security Act – CARES Act. https://www.congress.gov/bill/116th-congress/house-bill/748/text. Accessed October 19, 2020.
11. DiNardo JC. 2019. Comment from Joseph Di-Nardo Posted by the Food and Drug Administra-tion on Apr 5, 2019. https://beta.regulations.gov/document/FDA-1978-N-0018-1508. Accessed October 20, 2020.
12. DiNardo JC, Downs CA. Dermatological and en-vironmental toxicological impact of the sun-screen ingredient oxybenzone/benzophenone-3. J Cosmet Dermatol. 2018;17:15-19, DOI: 10.1111/jocd.12449.
13. DiNardo JC, Downs CA. Can oxybenzone cause Hirschsprung’s disease? Reprod Toxicol. 2019;86:98-100, 10.1016/j.reprotox.2019.02.014.
14. Donato AL, Huang Q, Liu X, Li F, Zimmerman MA, Li CY. Caspase 3 promotes surviving mela-noma tumor cell growth after cytotoxic therapy. J Invest Dermatol. 2014,134:1686-1692, DOI: 10.1038/jid.2014.18.
15. Downs CA, DiNardo JC, Stien D, Rodriguez AMS, Lebaron P. Time-dependent benzophe-none accumulation in commercial sunscreen products from the degradation of octocrylene – danger of toxicity and carcinogenicity. Chem Res Toxicol. 2020 In-Press.
16. Duale N, Olsen AK, Christensen T, Butt ST, Brunborg G. Octyl methoxycinnamate modulates gene expression and prevents cyclobutane py-rimidine dimer formation but not oxidative DNA damage in UV-exposed human cell lines. Toxicol Sci. 2010;114:272-84, DOI: 10.1093/toxsci/kfq005.
17. EurekAlert 2006. Swedish Research Council: Sunscreens with benzophenone-3 unsuitable for children. https://www.eurekalert.org/pub_releases/2006-11/src-swb110606.php. Accessed October 19, 2020.
18. European Chemicals Agency (ECHA). 1963a. Homosalate chronic toxicity: oral – Endpoint Summary. https://echa.europa.eu/registration-dossier/-/registered-dossier/13246/7/6/1. Ac-cessed October 19, 2020.
19. European Chemicals Agency (ECHA). 1963b. 2-ethylehexyl salicylate sub-chronic toxicity: der-mal – Endpoint Summary. https://echa.europa.eu/registration-dossier/-/registered-dossier/14203/7/6/4. Accessed Octo-ber 20, 2020.
20. European Chemicals Agency (ECHA). 1963c. 2-ethylehexyl salicylate carcinogenicity: oral – Endpoint Summary. https://echa.europa.eu/registration-dossier/-/registered-dossier/14203/7/8). Accessed Octo-ber 20, 2020.
21. European Chemicals Agency (ECHA). 2012. 2-ethylehexyl salicylate short-term repeated dose toxicity: oral (reproductive toxicity) – Endpoint Summary. https://echa.europa.eu/registration-dossier/-/registered-dossier/14203/7/6/2. Ac-cessed October 20, 2020.
22. European Commission 2006. Health & Consumer Protection Directorate-General. Opinion on ben-zophenone-3 COLIPA N° S38. Opinion adopted by the SCCP during the 10th plenary of 19 De-cember 2006. https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_078.pdf. Accessed Octo-ber 19, 2020.
23. European Food Safety Authority (EFSA). Safety of benzophenone to be used as flavouring EF-SA J. 2017;15:1-33. 10.2903/j.efsa.2017.5013.
24. Food & Drug Administration 2016a. Nonprescrip-tion Sunscreen Drug Products – Safety and Ef-fectiveness Data Guidance for Industry. https://www.fda.gov/media/94513/download. Accessed October 19, 2020.
25. Food & Drug Administration 2016b. Sunscreen Innovation Act (SIA). https://www.fda.gov/drugs/guidance-compliance-regulatory-information/sunscreen-innovation-act-sia. Accessed October 19, 2020.
26. Food & Drug Administration 2018. Food Addi-tive Regulations; Synthetic Flavoring Agents and Adjuvants. https://docs.regulations.justia.com/entries/2018-10-09/2018-21807.pdf. Accessed October 19, 2020.
27. Food & Drug Administration 2019. Sunscreen Drug Products for Over-the-Counter Human Use. Federal Register/Vol. 84, No. 38/Tuesday, Feb-ruary 26, 2019/Proposed Rules. https://www.govinfo.gov/content/pkg/FR-2019-02-26/pdf/2019-03019.pdf. Accessed October 19, 2020.
28. FutureDerm 2012. How does Octinoxate De-grade Avobenzone?
29. https://www.futurederm.com/how-does-octinoxate-degrade-avobenzone/. Accessed Oc-tober 19, 2020.
30. Green AC, Williams GM, Logan V, Strutton GM. Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol. 2011;29:257-63, DOI: 10.1200/JCO.2010.28.7078.
31. Heurung AR, Raju SI, Warshaw EM. Benzophe-nones. Dermatitis. 2014;25:3-10, DOI: 10.1097/DER.0000000000000025.
32. Huo W, Cai P, Chen M, Li H, Tang J, Xu C. et al. The relationship between prenatal exposure to BP-3 and Hirschsprung’s disease. Chemosphere. 2016;144:1091-1097, DOI: 10.1016/j.chemosphere.2015.09.019
33. International Agency for Research on Cancer 2013. Volume 101; IARC Monographs on the evaluation of the carcinogenic risks to humans – Benzonphenone. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono101-007.pdf. Ac-cessed October 19, 2020.
34. Janjua NR, Mogensen B, Andersson A, Petersen JH, Henriksen M, Skakkebaek NE, Wulf HC. Systemic absorption of the sunscreens benzo-phenone-3, octyl-methoxycinnamate, and 3-(4-methyl-benzylidene) camphor after whole-body topical application and reproductive hormone levels in humans. J Invest Dermatol. 2004;123:57-61, DOI: 10.1111/j.0022-202X.2004.22725.x.
35. Jiménez-Díaz I, Molina-Molina J M, Zafra-Gómez A, Ballesteros O, Navalón A, Real M, Sáenz J M, et al. Simultaneous determination of the UV-filters benzyl salicylate, phenyl salicylate, octyl salicylate, homosalate, 3-(4-methylbenzylidene) camphor and 3-benzylidene camphor in human placental tissue by LC-MS/MS. Assessment of their in vitro endocrine activity. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;936:80-87, DOI: 10.1016/j.jchromb.2013.08.006.
36. Karabulut AK, Ulger H, Pratten MK. Protection by free oxygen radical scavenging enzymes against salicylate-induced embryonic malfor-mations in vitro. Toxicol In Vitro. 2000;14:297-307, DOI: 10.1016/s0887-2333(00)00023-0.
37. Ma R, Cotton B, Lichtensteiger W, Schlumpf M. UV filters with antagonistic action at androgen receptors in the MDA-kb2 cell transcriptional-activation assay. Toxicol Sci. 2003;74:43-50, DOI: 10.1093/toxsci/kfg102.
38. Manova E, von Goetz N, Hungerbuehler K. Ag-gregate consumer exposure to UV filter ethylhexyl methoxycinnamate via personal care products. Environ Int. 2015;74:249-57, DOI: 10.1016/j.envint.2014.09.008.
39. Matta MK, Zusterzeel R, Pilli NR, Patel V, Volpe DA, Floria J, et al. Effect of sunscreen applica-tion under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial. JAMA. 2019;321:2082-2091, DOI: 10.1001/jama.2019.5586.
40. Matta MK, Florian J, Zusterzeel R, Pilli NR, Patel V, Volpe DA, et al. Effect of sunscreen applica-tion on plasma concentration of sunscreen ac-tive ingredients. JAMA. 2020;323:256-267, DOI: 10.1001/jama.2019.20747.
41. Nakamura N, Inselman AL, White GA, Chang CW, Trbojevich RA, Sephr E, Voris KL, et al. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat off-spring. Birth Defects Res B Dev Reprod Toxicol. 2015;104:35-51, DOI: 10.1002/bdrb.21137.
42. Nakamura N, Vijay V, Desai VG, Hansen DK, Han T, Chang CW, Chen YC, et al. Transcript profiling in the testes and prostates of postnatal day 30 Sprague-Dawley rats exposed prenatally and lactationally to 2-hydroxy-4-methoxybenzophenone. Reprod Toxicol. 2018;82:111-123, DOI: 10.1016/j.reprotox.2018.10.001.
43. Nation Toxicology Program 2020. Toxicology and Carcinogenesis Studies of 2- Hydroxy-4-methoxybenzophenone Administered in Feed to Sprague Dawley (Hsd:Sprague Dawley SD) Rats and B6C3F1/N Mice. May 2020 https://ntp.niehs.nih.gov/publications/reports/tr/500s/tr597/index.html?utm_source=direct&utm_medi-um=prod&utm_campaign=ntpgolinks&utm_term=tr597abs. Accessed October 19, 2020.
44. Rehfeld A, Dissing S, Skakkebæk NE. Chemical UV Filters Mimic the Effect of Progesterone on Ca 2+ Signaling in Human Sperm Cells. Endocri-nology. 2016;157:4297-4308, DOI: 10.1210/en.2016-1473.
45. Rehfeld A, Egeberg DL, Almstrup K, Petersen JH, Dissing S, Skakkebæk NE. EDC IMPACT: Chemical UV filters can affect human sperm function in a progesterone-like manner. Endocr Connect. 2018;7:16-25, DOI: 10.1530/EC-17-0156.
46. Rhodes MC, Bucher JR, Peckham JC, Kissling GE, Hejtmancik MR, Chhabra RS. Carcinogene-sis studies of benzophenone in rats and mice. Food Chem Toxicol. 2007;45:843-851, https://doi.org/10.1016/j.fct.2006.11.003.
47. Schiffer C, Müller A, Egeberg DL, Alvarez L, Brenker C, Rehfeld A, Frederiksen H. Direct ac-tion of endocrine disrupting chemicals on human sperm. EMBO Rep. 2014;15:758-65, DOI: 10.15252/embr.201438869.
48. Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, LichtensteigerIn W. In vitro and in vivo estrogenicity of UV screens. Environ Health Perspect. 2001;109:239-44. DOI: 10.1289/ehp.01109239.
49. Schreurs RHMM, Sonneveld E, Jansen JHJ, Seinen W, van der Burg. Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR), and progesterone receptor (PR) in reporter gene bioassays. Toxi-col Sci. 2005;83:264-72, DOI: 10.1093/toxsci/kfi035.
50. Wilson RD. Principles of human teratology: drug, chemical, and infectious exposure. Obstet Gynaecol. 2007;29:911-917, DOI: 10.1016/S1701-2163(16)32668-8.
51. Yang C, Lim W, Bazer FW, Song G. Homosalate aggravates the invasion of human trophoblast cells as well as regulates intracellular signaling pathways including PI3K/AKT and MAPK path-ways. Environ Pollut. 2018;243:1263-1273, DOI: 10.1016/j.envpol.2018.09.092.
52. Yazar S, Ertekin SK. Assessment of the cytotox-icity and genotoxicity of homosalate in MCF-7. J Cosmet Dermatol. 2020;19:246-252, DOI: 10.1111/jocd.12973.