Expression of transcription factors (STAT 2, 3, 4, and 6, HDAC1, HDAC2) in craniopharyngioma

Martha Lilia Tena-Suck. M.D.1*, Wilhem Moreno. M.D.2, Sergio Zavala-Vega. PhD3 , Carmen Rubio. PhD4*

1Departamento de Neuropatología. Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez. Ciudad de México. 2Laboratorio de Neurofisiología. Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez. Ciudad de México. México. 3Department of Neuropathology. National Institute of Neurology and Neurosurgery. México City, México. 4Laboratorio de Neurofisiología.  Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez.  Ciudad de México.

Background: Craniopharyngioma is a benign tumor of the sellar region that is typically characterized by a maldevelopment tumor with a high recurrence rate, as well as substantial morbidity and mortality in the long term. Signal transducers and transcription activators have been identified as critical components of cytokine signaling pathways that have previously been documented in craniopharyngioma-related literature.

Purpose: The primary goal of this investigation is to examine transcription factor expression in craniopharyngiomas. In addition, a clinical-pathological and immunohistochemistry correlation will be sought. The current study enlisted the participation of forty patients. AdaCPs exhibited: β-catenin STAT2, STAT3, STAT6, and HDAC1 expression. While, STAT4, HDAC2, and GATA 3 were all negative. TTF1 was found in proteinaceous substances within the cyst formation (OMF). β-FGR, DPGR, TNFa, and Nrf2 were found to be associated with inflammation, OMF presence, and finger protrusion in brain surrounding tissue or brain invasion.

Conclusions: Tumor recurrence was associated with increased expression of STAT3, STAT6, HDAC, β-catenin, and TNFα in WLA when compared to no recurrence. Coexpression of β-catenin, STAT2, STAT3, and STAT6 with TNFα was also shown using double fluorescence merge stains. There was no association between HDAC1 and HDAC2 coexpression and β-catenin, notably in the WLAs.

Discussion: Histologically complicated features include cystic and solid components, the latter of which is made up of diverse morphological cell types. HDAC1 and HDAC2 regulate the enhanced expression of inflammatory genes during inflammation and macrophage response.

Keywords: craniopharyngioma; transcriptions factors, proliferation, invasion, prognosis; STATs; HDAC1 and HDAC2, TNFα, β-catenin.

Free Full-text PDF

How to cite this article:
Martha Lilia Tena-Suck, Wilhem Moreno, Sergio Zavala- Vega, Carmen Rubio. Expression of transcription factors (STAT 2, 3, 4, and 6, HDAC1, HDAC2) in craniopharyngioma.American Journal of Histology and Cytology, 2021, 4:12. DOI: 10.28933/ajohc-2021-10-0605


1. D.N. Louis, H. Ohgaki, O.D. Wiestler, W.K. Cavenee, P.C. Burger, A. Jouvet, B.W. Scheithauer, P. Kleihues, WHO classification of tumours of the central nervous system, Forth edit, International Agency of Reserch on Cancer, Lyon, 2016.
2. K. Kato, Y. Nakatani, H. Kanno, Y. Inayama, R. Ijiri, N. Nagahara, T. Miyake, M. Tanaka, Y. Ito, N. Aida, K. Tachibana, K.I. Sekido, Y. Tanaka, Possible linkage between specific histological structures and aberrant reactivation of the Wnt pathway in adamantinomatous craniopharyngioma, J. Pathol. 203 (2004).
3. J.P. Martinez-Barbera, R. Buslei, Adamantinomatous craniopharyngioma: pathology, molecular genetics and mouse models., J. Pediatr. Endocrinol. Metab. 28 (2015) 7–17.
4. P.K. Brastianos, G.M. Shankar, C.M. Gill, A. Taylor-Weiner, N. Nayyar, D.J. Panka, R.J. Sullivan, D.T. Frederick, M. Abedalthagafi, P.S. Jones, I.F. Dunn, B. V Nahed, J.M. Romero, D.N. Louis, G. Getz, D.P. Cahill, S. Santagata, W.T. Curry, F.G. Barker, Dramatic Response of BRAF V600E Mutant Papillary Craniopharyngioma to Targeted Therapy., J. Natl. Cancer Inst. 108 (2016).
5. T. Bowman, R. Garcia, J. Turkson, R. Jove, STATs in oncogenesis., Oncogene. 19 (2000) 2474–88.
6. J. Bromberg, J.E. Darnell, The role of STATs in transcriptional control and their impact on cellular function., Oncogene. 19 (2000) 2468–73.
7. V. Thimsen, N. John, M. Buchfelder, J. Flitsch, R. Fahlbusch, H. Stefanits, E. Knosp, M. Losa, R. Buslei, A. Hölsken, Expression of SRY-related HMG Box Transcription Factors (Sox) 2 and 9 in Craniopharyngioma Subtypes and Surrounding Brain Tissue., Sci. Rep. 7 (2017) 15856.
8. M. Garcia-Lavandeira, C. Saez, E. Diaz-Rodriguez, S. Perez-Romero, A. Senra, C. Dieguez, M.A. Japon, C. V Alvarez, Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors., J. Clin. Endocrinol. Metab. 97 (2012) E80-7.
9. M.L. Tena-Suck, A.Y. Morales-Del Ángel, M.E. Hernández-Campos, F. Fernández-Valverde, A. Ortíz-Plata, A.D. Hernández, A. Santamaría, Ultrastructural characterization of craniopharyngioma at the tumor boundary: A structural comparison with an experimental toxic model using “oil machinery” fluid, with emphasis on Rosenthal fibers., Acta Histochem. 117 (2015) 696–704.
10. J.M. Gonzalez-Meljem, J.P. Martinez-Barbera, Senescence drives non-cell autonomous tumorigenesis in the pituitary gland., Mol. Cell. Oncol. 5 (2018) e1435180.
11. J.R. Apps, G. Carreno, J.M. Gonzalez-Meljem, S. Haston, R. Guiho, J.E. Cooper, S. Manshaei, N. Jani, A. Hölsken, B. Pettorini, R.J. Beynon, D.M. Simpson, H.C. Fraser, Y. Hong, S. Hallang, T.J. Stone, A. Virasami, A.M. Donson, D. Jones, K. Aquilina, H. Spoudeas, A.R. Joshi, R. Grundy, L.C.D. Storer, M. Korbonits, D.A. Hilton, K. Tossell, S. Thavaraj, M.A. Ungless, J. Gil, R. Buslei, T. Hankinson, D. Hargrave, C. Goding, C.L. Andoniadou, P. Brogan, T.S. Jacques, H.J. Williams, J.P. Martinez-Barbera, Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target., Acta Neuropathol. 135 (2018) 757–777.
12. A.M. Donson, J. Apps, A.M. Griesinger, V. Amani, D.A. Witt, R.C.E. Anderson, T.N. Niazi, G. Grant, M. Souweidane, J.M. Johnston, E.M. Jackson, B.K. Kleinschmidt-DeMasters, M.H. Handler, A.-C. Tan, L. Gore, A. Virasami, J.M. Gonzalez-Meljem, T.S. Jacques, J.P. Martinez-Barbera, N.K. Foreman, T.C. Hankinson, Molecular Analyses Reveal Inflammatory Mediators in the Solid Component and Cyst Fluid of Human Adamantinomatous Craniopharyngioma, J. Neuropathol. Exp. Neurol. 76 (2017) 779–788.
13. R. Buslei, A. Hölsken, B. Hofmann, J. Kreutzer, F. Siebzehnrubl, V. Hans, F. Oppel, M. Buchfelder, R. Fahlbusch, I. Blümcke, Nuclear beta-catenin accumulation associates with epithelial morphogenesis in craniopharyngiomas., Acta Neuropathol. 113 (2007) 585–90.
14. C.E.B. Jucá, L.M. Colli, C.S. Martins, M.L. Campanini, B. Paixão, R.V. Jucá, F.P. Saggioro, R.S. de Oliveira, A.C. Moreira, H.R. Machado, L. Neder, S.R. Antonini, M. de Castro, Impact of the Canonical Wnt Pathway Activation on the Pathogenesis and Prognosis of Adamantinomatous Craniopharyngiomas., Horm. Metab. Res. 50 (2018) 575–581.
15. L. Zhang, D. Alizadeh, M. Van Handel, M. Kortylewski, H. Yu, B. Badie, Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice., Glia. 57 (2009) 1458–67.
16. K. Hirahara, A. Onodera, A. V Villarino, M. Bonelli, G. Sciumè, A. Laurence, H.-W. Sun, S.R. Brooks, G. Vahedi, H.-Y. Shih, G. Gutierrez-Cruz, S. Iwata, R. Suzuki, Y. Mikami, Y. Okamoto, T. Nakayama, S.M. Holland, C.A. Hunter, Y. Kanno, J.J. O’Shea, Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity., Immunity. 42 (2015) 877–89.
17. S.J. Park, H. Kim, S.H. Kim, E.-H. Joe, I. Jou, Epigenetic downregulation of STAT6 increases HIF-1α expression via mTOR/S6K/S6, leading to enhanced hypoxic viability of glioma cells., Acta Neuropathol. Commun. 7 (2019) 149.
18. H. Yu, H. Lee, A. Herrmann, R. Buettner, R. Jove, Revisiting STAT3 signalling in cancer: new and unexpected biological functions., Nat. Rev. Cancer. 14 (2014) 736–46.
19. S.F.H. Waqas, G. Ampem, T. Röszer, Analysis of IL-4/STAT6 Signaling in Macrophages., Methods Mol. Biol. 1966 (2019) 211–224.
20. K.J. Falkenberg, R.W. Johnstone, Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders., Nat. Rev. Drug Discov. 13 (2014) 673–91.
21. J.E. Bolden, M.J. Peart, R.W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nat. Rev. Drug Discov. 5 (2006) 769–784.
22. S. Minucci, P.G. Pelicci, Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer., Nat. Rev. Cancer. 6 (2006) 38–51.
23. M. Kanamori, T. Higa, Y. Sonoda, S. Murakami, M. Dodo, H. Kitamura, K. Taguchi, T. Shibata, M. Watanabe, H. Suzuki, I. Shibahara, R. Saito, Y. Yamashita, T. Kumabe, M. Yamamoto, H. Motohashi, T. Tominaga, Activation of the NRF2 pathway and its impact on the prognosis of anaplastic glioma patients., Neuro. Oncol. 17 (2015) 555–65.
24. J. Ecker, O. Witt, T. Milde, Targeting of histone deacetylases in brain tumors, CNS Oncol. 2 (2013) 359–376.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).

This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.