Population Structure And Diversity Among Improved Cowpea Varieties From Senegal Based On Microsatellite Markers

Population Structure And Diversity Among Improved Cowpea Varieties From Senegal Based On Microsatellite Markers

Awa Sarr1,2 , Amy Bodian1, Bassiaka Ouattara3, Mouhamadou Moussa Diangar4, Mbaye Ndoye Sall1, Elisabeth A.M.C. Diop1, Diaga Diouf2, Ndiaga Cissé1

1Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Thiès, Sénégal; 2 Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop (UCAD), Dakar Fann, Sénégal; 3 Université de Fada N’Gourma (U-FDG), Fada N’Gourma, Burkina Faso; 4 Institut Sénégalais de Recherches Agricoles (ISRA), ISRA CNRA de Bambey, ISRA/Center of Excellence of CERAAS, BP53, Diourbel, Senegal

Global Journal of Molecular Biology

Cowpea (Vigna unguiculata) is used in West Africa for both human consumption and animal feeding. Despite its importance, the production of the crop is hampered by biotic and abiotic constraints. To overcome these constraints, the Senegalese Institute of Agricultural Research (ISRA) has set up a breeding program since 1960 leading to the release of productive varieties. Information of the genetic diversity for these varieties could improve the effectiveness of further breeding programs. The objectives of this study was to assess the genetic diversity and the population structure of 11 cowpea improved varieties from ISRA collection. Twelve (12) polymorphic microsatellite markers were used and the analysis of genotypic data showed a total of 39 alleles ranging from 2 (SSR6288, SSR6311 and SSR6827) to 6 (SSR6807) per locus. Polymorphism rate ranged from 8.33% (Mougne and Kelle) to 58.33% (Mouride) with an average of 31.06%. Intra varietal genetic diversity was very weak (0.012 to 0.091). The genetic similarity revealed that Melakh and Pakau varieties were genetically the closest while Bambey 21 and Sam were the most distant. These results are confirmed by the dendrogram, which also showed that Thieye, Leona, Kelle, Sam, Mougne and Yacine varieties have a higher genetic stability than Lisard, Melakh, Pakau, Mouride and Bambey 21. Eighty-seven percent (87%) of the total variability was attributed to inter varietal variability while 17% was due to intra varietal variation. These results provide a better knowledge of genetic resources of cowpea varieties released and held by ISRA and constitute important input for further cowpea breeding programs.

Keywords: Cowpea, Genetic diversity, Improved varieties, SSR markers, Senegal

Free Full-text PDF

How to cite this article:
Awa Sarr, Amy Bodian, Bassiaka Ouattara, Mouhamadou Moussa Diangar, Mbaye Ndoye Sall, Elisabeth A.M.C. Diop, Diaga Diouf, Ndiaga Cissé. Population Structure And Diversity Among Improved Cowpea Varieties From Senegal Based On Microsatellite Markers. Global Journal of Molecular Biology, 2021, 3:7. DOI: 10.28933/gjmb-2020-12-2305

1 Ouédraogo S (2003) Impact économique des variétés améliorées du niébé sur les revenus des exploitations agricoles du plateau central du Burkina Faso. Tropicultura 21:204–210
2 Abtew A, Niassy S, Affognon H, Subramanian S, Kreiter S, Garzia GT, Martin T (2016) Farmers’ knowledge and perception of grain legume pests and their management in the Eastern province of Kenya. Crop Prot 87:90–97
3 Boukar O, Fatokun CA, Huynh B-L, Roberts PA, Close TJ (2016) Genomic Tools in Cowpea Breeding Programs: Status and Perspectives. Front Plant Sci 7: . https://doi.org/10.3389 /fpls.2016.00757
4 Langyintuo AS, Lowenberg-DeBoer J, Faye M, Lambert D, Ibro G, Moussa B, Kergna A, Kushwaha S, Musa S, Ntoukam G (2003) Cowpea supply and demand in West and Central Africa. Field Crops Res 82:215–231 . https://doi.org/10.1016/S0378-4290(03)00039-X
5 Singh BB (2005) Cowpea Vigna unguiculata (L.) Walp.. In: Genetic resources, chromosome engineering and crop improvement, Ram J. Singh, Prem P. Jauhar. CRC Press Boca Raton, FL, pp 117–162
6 Timko MP, Singh BB (2008) Cowpea, a multifunctional legume. In: Genomics of tropical crop plants. Springer, pp 227–258
7 Agbicodo EM, Fatokun CA, Muranaka S, Visser RGF, Linden van der CG (2009) Breeding drought tolerant cowpea: constraints, accomplishments, and future prospects. Euphytica 167:353–370 . https://doi.org/10.1007/s10681-009-9893-8
8 Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454 . https://doi.org/10.1016/j.eja.2004.07.005
9 FAOSTAT (2018) Agricultural Production. Crop primary database. Food and Agricultural Organization of the United Nations. In: fao.org. http://faostat.fao.org/faostat. Accessed 3 Nov 2020
10 ANSD (Agence Nationale de la Statistique et de la démographique) (2019) Bulletin mensuel des statistiques économiques d’Octobre 2019. http://www.ansd.sn/
11 Dikshit, H. K., Jhang, T., Singh, N. K., Koundal, K. R., Bansal, K. C., Chandra, N., … & Sharma, T. R. (2007). Genetic differentiation of Vigna species by RAPD, URP and SSR markers. Biologia plantarum, 51(3), 451-457.
12 Fatokun CA, Danesh D, Young ND, Stewart EL (1993) Molecular taxonomic relationships in the genus Vigna based on RFLP analysis. Theor Appl Genet 86:97–104 . https://doi.org/10.1007 /BF00 223813
13 Diouf D, Hilu KW (2005) Microsatellites and RAPD Markers to Study Genetic Relationships Among Cowpea Breeding Lines and Local Varieties in Senegal. Genet Resour Crop Evol 52:1057–1067 . https://doi.org/10.1007/s10722-004-6107-z
14 Fang J, Chao C-CT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea Vigna unguiculata (L.) Walp. in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209 . https://doi.org/10.1007/s10722-006-9101-9
15 Wamalwa EN, Muoma J, Wekesa C (2016) Genetic Diversity of Cowpea (Vigna unguiculata (L.) Walp.) Accession in Kenya Gene Bank Based on Simple Sequence Repeat Markers. Int J Genomics 1–5. https://doi.org/10.115 5/2 016/ 8956412
16 Li Wang M, Barkley NA, Gillaspie GA, Pederson GA (2008) Phylogenetic relationships and genetic diversity of the USDA Vigna germplasm collection revealed by gene-derived markers and sequencing. Genet Res 90:467–480 . https://doi.org/10.1017/S0016672308009889
17 Xiong H, Shi A, Mou B, Qin J, Motes D, Lu W, Ma J, Weng Y, Yang W, Wu D (2016) Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLOS ONE 11:e0160941. https://doi.org/10.1371/journal.pone.0160941
18 Huynh B-L, Close TJ, Roberts PA, Hu Z, Wanamaker S, Lucas MR, Chiulele R, Cissé N, David A, Hearne S, Fatokun C, Diop NN, Ehlers JD (2013) Gene Pools and the Genetic Architecture of Domesticated Cowpea. Plant Genome 6:0 . https://doi.org/10.3 835/pla ntgeno me2013.03.0005
19 Fatokun C, Girma G, Abberton M, Gedil M, Unachukwu N, Oyatomi O, Yusuf M, Rabbi I, Boukar O (2018) Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep 8:16035 . https://doi.org/10.1 038/s41598-018-34555-9
20 Nadjiam D, Roy-Macauley H, Diallo N, Cisse N (2007) Etude de la variabilité génétique et moléculaire de sept variétés de niébé (vigna unguiculata, L. Walp) de la collection de l’ISRA par des marqueurs microsatellites. Agriculture 9:15–21
21 Badiane FA, Gowda BS, Cissé N, Diouf D, Sadio O, Timko MP (2012) Genetic relationship of cowpea (Vigna unguiculata) varieties from Senegal based on SSR markers. Genet Mol Res 11:292–304 . https://doi.org/10.4238/2012.February.8.4
22 Cisse N (2015) Rapport technique sur la caracterisation et l’evaluation des varietes de niebe « Lisard, Thieye, Leona, Kelle et Sam »
23 Kathurima, C. W., Kenji, G. M., Muhoho, S. M., Boulanger, R., Gichimu, B. M., & Gichuru, E. K. (2012). Genetic diversity among commercial coffee varieties, advanced selections and museum collections in Kenya using molecular markers. International Journal of Biodiversity and conservation, 4(2), 39-46.
24 Risterucci AM, Grivet L, N’Goran JAK, Pieretti I, Flament MH, Lanaud C (2000) A high-density linkage map of Theobroma cacao L. Theor Appl Genet 101:948–955. https://doi.org/10.1007/s 001 220051566
25 Sarr A, Bodian A, Gbedevi KM, Ndir KN, Ajewole OO, Gueye B, Foncéka D, Diop EAMC, Diop BM, Cissé N, Diouf D (2020) Genetic Diversity and Population Structure Analyses of Wild Relatives and Cultivated Cowpea (Vigna unguiculata (L.) Walp.) from Senegal Using Simple Sequence Repeat Markers. Plant Mol Biol Report. https://doi.org/10.1007/s11105-020-01232-z
27 Pritchard JK, Stephens M, Donnelly P (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics 155:945–959
28 Perrier, X, Jacquemoud-Collet, JP (2016) DARwin Software
29 Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361 . https://doi.org/10.100 7/s126 86-011-9548-7
30 Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620 . https://doi.org/10.111 1/j.1365-294X.2005.02553.x
31 Mhiri C, Grandbastien M-A (2004) Éléments transposables et analyse de la biodiversité végétale. Génomique En Biol. Végétale 377–401
32 Kouakou CK, Roy-Macauley H, Coudou M, Otto MC, Rami J-F, Cissé N (2007) Diversité génétique des variétés traditionnelles de niébé Vigna unguiculata (L.) Walp. au Sénégal : étude préliminaire. Plant Genet Resour Newsl 152:33–44