DIVERSITY AND POPULATION STRUCTURE OF LOCAL AND EXOTIC LABLAB PURPUREUS ACCESSIONS IN KENYA AS REVEALED BY MICROSATELLITE MARKERS


DIVERSITY AND POPULATION STRUCTURE OF LOCAL AND EXOTIC LABLAB PURPUREUS ACCESSIONS IN KENYA AS REVEALED BY MICROSATELLITE MARKERS


Eliezah M. Kamau1*, Miriam G. Kinyua2, Charles N. Waturu1, Oliver Kiplagat2, Bramwel W. Wanjala1, Robert K. Kariba3 and David R. Karanja1

1Kenya Agriculture and Livestock Research Organization. P.O. Box 57811-00200, Nairobi, Kenya. 2University of Eldoret, School of Agriculture and Biotechnology. P.O. BOX 1125, Eldoret, Kenya. 3World Agroforestry P.O. BOX 30677-00100, Nairobi


Lablab purpureus is an important pulse crop in some parts of sub-Saharan Africa and Asia but has largely remained underutilized. Understanding the genetic diversity is prerequisite for genetic improvement and utilization of this leguminous crop. The relationships of the local lablab genotypes and those collected from other diverse geographic origins including the wild accessions remain unknown in Kenya. The study was undertaken to determine genetic diversity and population structure of germplasm accessions collected from Kenya and other global regions. Eight simple sequence repeat primer pairs were used to genotype the 189 lablab accessions. A total of 39 alleles were revealed by eight SSR with an average of 4.88 alleles per polymorphic loci. The average PIC was 0.42. The gene diversity among the accessions ranged from 0.26 to 0.52 with an average of 0.38, indicating moderate genetic diversity. Germplasm collected from Kenya showed a moderate genetic diversity of 0.36. Higher genetic diversity (He<0.5) was detected within the Ethiopian and South Africa populations. Analysis of molecular variance (AMOVA) revealed that 94% of the allele diversity was attributed to individuals within populations while only 6% was distributed among the populations. The Bayesian model-based Structure method and Principal coordinate analysis (PCoA) scatter plot clustered the accessions into three groups  with germplasms collected from Kenya showing distribution among all the three groups. The wild accessions clustered mainly with those from Southern and Eastern Africa confirming earlier suggestions that lablab is of African origin. The results of this study are discussed in light of the crop improvement of this crop.


Keywords: Lablab purpureus; Population structure; SSR; Genetic diversity; Improved varieties

Free Full-text PDF


How to cite this article:

Eliezah M. Kamau, Miriam G. Kinyua, Charles N. Waturu, Oliver Kiplagat, Bramwel W. Wanjala, Robert K. Kariba and David R. Karanja. DIVERSITY AND POPULATION STRUCTURE OF LOCAL AND EXOTIC LABLAB PURPUREUS ACCESSIONS IN KENYA AS REVEALED BY MICROSATELLITE MARKERS. Global Journal of Molecular Biology, 2021; 3:8. DOI: 10.28933/gjmb-2021-02-1505


References:

1. B. L. Maass, R. H. Jamnadass, J. Hanson, and B. C. Pengelly. (2005). “Determining sources of diversity in cultivated and wild Lablab purpureus related to provenance of germplasm by using amplified fragment length polymorphism,” Genet. Resour. Crop Evol., vol. 52, no. 6, pp. 683–695.
2. N. E. Kimani, N. . Wachira, and G. M. Kinyua. (2012). “Molecular Diversity of Kenyan Lablab Bean (Lablab purpureus (L.) Sweet) Accessions Using Amplified Fragment Length Polymor- phism Markers,” Am. J. Plant Sci., vol. 03, no. 03, pp. 313–321.
3. A. Sennhenn. (2015). “Exploring niches for short-season grain legumes in semi-arid Eastern Kenya.,” PhD thesis, Georg-August university, Germany.
4. C. M. Keerthi, S. Ramesh, M. Byregowda, A. Rao, and B. S. Prasad. (2014). “Genetics of growth habit and photoperiodic response to flowering time in dolichos bean ( Lablab purpureus ( L .) Sweet ),” J. Genet., vol. 93, no. 1, pp. 203–206.
5. G. N. Kamotho (2015). “Evaluation of adapta- bility potential and genetic diversity of kenyan dolichos bean (Lablab purpureus (l.) sweet) germplasm,” PhD thesis, University of Eldoret, Kenya.
6. O. S. Omondi. (2011). “The potential for njahi (Lablab purpureus L.) in improving Consumption adequacy for protein , iron and zinc in households: A case for Nandi south District, Kenya”. Master of Science thesis, University of Nairobi, Kenya.
7. B. L. Maass, M. R. Knox, S. C. Venkatesha, T. T. Angessa, S. Ramme, and B. C. Pengel- ly .(2010). “Lablab purpureus-A Crop Lost for Africa?,” Trop. Plant Biol., vol. 3, no. 3, pp. 123–135.
8. P. A. E. Al-snafi. (2017) “The pharmacology and medical importance of Dolichos lablab ( Lablab purpureus ) – A review,” IOSR J. Pharm., vol. 7, no. 2, pp. 22–30.
9. S. M. Kilonzi, A. O. Makokha, and G. M. Kenji. (2017). “Physical characteristics, proximate composition and anti-nutritional factors in grains of lablab bean (Lablab purpureus) genotypes from Kenya,” J. Appl. Biosci., vol. 114, no. 1, p. 11289.
10. Agriculture Fisheries and Food Authority. (2014). “AFFA year book of statistics 2014,” Agric. Fish. food Auth. Tea House. Nairobi, Kenya., p. 62.
11. A. Shivachi, K. Kiplagat, and G. Kinyua. (2013) “Microsatellite analysis of selected Lablab purpureus genotypes in Kenya,” Rwanda J., vol. 28, no. 1, pp. 39–52.
12. E. Arunga, K. Miriam, O. Julius, O. James, and C. Emy. (2015). “Genetic diversity of deter- minate French beans grown in Kenya based on morpho-agronomic and simple sequence repeat variation,” J. Plant Breed. Crop Sci., vol. 7, no. 8, pp. 240–250.
13. A. N. Bhanu. (2018). “Assessment of Genetic Diversity in Crop Plants – An Overview,” Adv. Plants Agric. Res., vol. 7, no. 3, pp. 279–286.
14. M. Govindaraj, M. Vetriventhan, and M. Srini- vasan. (2015). “Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical pers- pectives,” Genet. Res. Int., vol. 2015.
15. Y. C. Li, A. B. Korol, T. Fahima, A. Beiles, and E. Nevo. (2002). “Microsatellites: Genomic distribu- tion, putative functions and mutational mecha- nisms: A review,” Mol. Ecol., vol. 11, no. 12, pp. 2453–2465.
16. Z. B. Ali, K. N. YAO, D. A. Odeny, M. Kyalo, R. Skilton, and I. M. Eltahir. (2015). “Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] accessions from Sudan using simple sequence repeat (SSR) markers,” African J. Plant Sci., vol. 9, no. 7, pp. 293–304.
17. X. F. Zheng et al. (2015). “Development and characterization of genic-SSR markers from different Asia lotus (Nelumbo nucifera) types by RNA-seq,” Genet. Mol. Res., vol. 14, no. 3, pp. 11171–11184.
18. Z. Wang et al. (2011). “Characterization and development of EST-derived SSR markers in cultivated sweetpotato ( Ipomoea batatas ),” BMC Plant Biol., vol. 11, no. 139.
19. M. L. C. Vieira, L. Santini, A. L. Diniz, and C. de F. Munhoz. (2016). “Microsatellite markers: What they mean and why they are so useful,” Genet. Mol. Biol., vol. 39, no. 3, pp. 312–328.
20. G. N. Kamotho, M. G. Kinyua, R. M. Muasya, S. T. Gichuki, B. W. Wanjala and E. Kamau. (2016). “Assessment of Genetic Diversity of Kenyan Dolichos Bean (Lablab purpureus L. Sweet) Using Simple Sequence Repeat (SSR) Markers,” Int. J. Agric. Environ. Bioresearch, vol. 1, no. 01, pp. 26–43.
21. J. J. & J. L. D. Doyle. (1987). “A rapid DNA isolation procedure for small quantitities of fresh leaf tissue,” pytochemical Bull., vol. 19, no. 1, pp. 11–15.
22. R. Peakall and P. E. Smouse. (2012) “GenAlEx 6 . 5 : genetic analysis in Excel . Population genetic software for teaching and research — an update,” Bioinforma. Appl. note, vol. 28, no. 19, pp. 2537–2539.
23. R. S. and G. J. G Evanno. (2005). “Detecting the number of clusters of individuals using the software STRUCTURE : a simulation study,” Mol. Ecol., vol. 14, pp. 2611–2620.
24. B. C. Pengelly and B. L. Maass. (2001). “Lablab purpureus ( L .) Sweet – diversity , potential use and determination of a core collection of this multi-purpose tropical legume,” Genet. Resour. Crop Evol., vol. 48, pp. 261–272.
25. K. J. Lee, J. Lee, R. Sebastin, G. Cho, and D. Y. Hyun. (2020). “Molecular Genetic Diversity and Population Structure of Ginseng Germplasm in RDA-Genebank : Implications for Breeding and Conservation,” Agronomy, vol. 10, no. 68.
26. F. Wolter, P. Schindele, and H. Puchta. (2019). “Plant breeding at the speed of light : the power of CRISPR / Cas to generate directed genetic diversity at multiple sites,” BMC Plant Biol., vol. 19, no. 176, pp. 1–8.
27. S. Aljumaili Jasim, M. Y. Rafii, M. A. Latif, S. Z. Sakimin, I. W. Arolu, and G. Miah. (2018). “Genetic Diversity of Aromatic Rice Germplasm Revealed by SSR Markers,” Biomed Res. Int., vol. 2018.
28. M. L. Wang, J. B. Morris, N. A. Barkley, R. E. Dean, T. M. Jenkins, and G. A. Pederson. (2007). “Evaluation of genetic diversity of the USDA Lablab purpureus germplasm collection using simple sequence repeat markers,” J. Hortic. Sci. Biotechnol., vol. 82, no. 4, pp. 571–578.
29. O. Robotham and M. Chapman. (2015). “Popu- lation genetic analysis of hyacinth bean (Lablab purpureus (L.) Sweet, Leguminosae) indicates an East African origin and variation in drought tolerance,” Genet. Resour. Crop Evol., vol. 64, no. 1, pp. 139–148.
30. G. B. Adu, F. J. Awuku, I. K. Amegbor, A. Haruna, K. A. Manigben, and P. A. Aboyadana. (2019). “Annals of Agricultural Sciences Genetic charac- terization and population structure of maize populations using SSR markers,” Ann. Agric. Sci., vol. 64, no. 1, pp. 47–54.
31. G. Greenbaum, A. R. Templeton, Y. Zarmi, and S. Bar-David. (2014). “Allelic richness following population founding events – A stochastic modeling framework incorporating gene flow and genetic drift,” PLoS One, vol. 9, no. 12, pp. 1–23.
32. B. L. Maass. (2016). “Origin, domestication and global dispersal of Lablab purpureus (L.) Sweet (Fabaceae): Current understanding,” Legum. Perspect., no. 13, pp. 5–8.
33. A. Bernard, T. Barreneche, F. Lheureux, and E. D. Id. (2018). “Analysis of genetic diversity and structure in a worldwide walnut ( Juglans regia L .) germplasm using SSR markers,” pp. 1–19.
34. P. & K. M. Sheng, Y.K., Weihong, Z., Kequan. (2005). “Genetic variation within and among populations of a dominant desert tree Haloxylon ammodendron ( Amaranthaceae ) in China,” Ann. Bot., vol. 96, pp. 245–252.
35. Z. Luo et al. (2019). “Genetic diversity and population structure of a Camelina sativa spring panel,” Front. Plant Sci., vol. 10, no. February, pp. 1–12.
36. G. Zhang, S. Xu, W. Mao, Y. Gong, and Q. Hu. (2013). “Development of EST-SSR markers to study genetic diversity in hyacinth bean (Lablab purpureus L.),” Plant Omics, vol. 6, no. 4, pp. 295–301.
37. I. Bertan, F. I. F. De Carvalho, and A. C. De Oliveira. (2007). “Parental Selection Strategies in Plant Breeding Programs,” J. Crop Science Biotechnol., vol. 10, no. 4, pp. 211–222.


Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).



This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.