Gustavo Leite Franklin, M.D., Ph.D.1; Nayra de Souza Carvalho Lima, Msc.2; Alex Tiburtino Meira, M.D., Msc, Ph.D.3, Lucas Andrade Ferreti, M.D.1; Conrado Regis Borges, M.D4

1Universidade Federal do Paraná, Curitiba, Paraná. 2Universidade Vila Velha, Espírito Santo. 3 Universidade Federal da Paraíba, João Pessoa, Paraíba. 4Universidade de São Paulo – FMUSP, São Paulo

Inflammation is a complex process, mediated by cellular and molecular mechanisms caused by a response to a tissue damage from an aggressive agent, whether if biological, chemical or physical origin. This process occurs, ultimately, with the purpose of promoting defense, repair and tissue regeneration. The inflammatory process leads to changes in blood vessels that have their diameter and flow altered, with the objective of leading to increased vascular permeability and consequent leakage of fluids and cells into the extracellular space of the affected tissue. This sequence of events generates the cardinal signs of inflammation, which are: pain, heat, redness, edema, with loss or alteration of function. The process occurs through mechanisms induced by cytokines and that despite having local manifestation, it can lead to systemic responses involving the whole organism with fever, chills, tremors, tachycardia, leukocytosis, sweating, diuresis and blood dyscrasias.
In the cascade of events related to inflammation, there is initially a local stimulus that promotes morphological and functional changes in the attacked tissue that trigger the release of signaling molecules, the defensins that have a chemotactic effect on monocytes, neutrophils and lymphocytes, and pro-inflammatory mediators. that are directly involved in the next inflammatory phases. There is, then, the recognition of aggression and the aggressor agent by the receptors of cells of the immune system and release of inflammatory mediators, of the cyclooxygenase pathway that will release prostaglandin, prostacyclins and thromboxanes and by the lipooxygenase pathway that will produce leukotrienes (Figure 1). Then, there is a modification of the local microcirculation promoting vasodilation, initially arteriolar and subsequently of the venules by the action of histamine release by mast cells, and associated with an increase in local blood flow, generate the cardinal flushing and heat signals.

Keywords: Inflammation; neuroinflammation

Free Full-text PDF

How to cite this article:
Gustavo Leite Franklin, Nayra de Souza Carvalho Lima, Alex Tiburtino Meira,Lucas Andrade Ferreti, Conrado Regis Borges.NEUROINFLAMMATION. International Journal of Neuroscience Research, 2021; 5:16. DOI: 10.28933/ijnr-2021-08-0805


1. ACUÑA, J.I.C.; ELGUETE, D.; PACHECO, R. T-cel-driven inflammation as a mediator of the gut-brain axis involved in Parkinson’s disease. Front Immunol 2018; 10:239.
2. Amor, S.; Peferoen, L.A.N.; Vogel, D.Y.S. et al. Inflammation in neurodegenerative diseases – an update. Immunology 2013; 142: 151–166.
3. Akiyama H, Barger S, Barnum S. Inflammation and Alzheimer’s disease. Neurobiol Aging 2000; 21:383–421.
4. ALASAD, Y.W.; ASHA, M.Z. Monoclonal antibodies as a preventive therapy for migraine: A meta-analysis. Clin Neurol Neurosurg. 2020 Aug; 195:105900. doi: 10.1016/j.clineuro.2020.105900. Epub 2020 May 11. PMID: 32460120.
5. ANDERSON, N. C.; KOSHY, A. A.; ROOS, K. L. Bacterial, Fungal and Parasitic Diseases of the Nervous System. In. DAROFF, R. B.; JANKOVIC, J.; MAZZIOTTA, J. C.; POMEROY, S. L. Bradley’s Neurology in Clinical Practice. London: Elsevier, 2016, p. 1147-1158.
6. ARCHER, L.D.; LANGFORD-SMITH, K.J.; BIGGER, B.W. et al. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity. J Inherit Metab Dis 2014; 37:1–12.
7. AUSTIN, P.J.; MOALEM-TAYLOR, G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol. 2010 Dec 15;229(1-2):26-50. doi: 10.1016/j.jneuroim.2010.08.013. Epub 2010 Sep 25. PMID: 20870295
8. BECKHAM, J. D.; SOLBRIG, M. V.; TYLER, K. L. Viral Encephalitis and Meningitis. In.DAROFF, R. B.; JANKOVIC, J.; MAZZIOTTA, J. C.; POMEROY, S. L. Bradley’s Neurology in Clinical Practice. London: Elsevier, 2016, p. 1121-1146.
9. BELLUCCI A, BUGIANI O, GHETTI B et al. Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener Dis 2011; 8:221–229
10. BORGES, C. R. et al. Neurosyphilis and ocular syphilis clinical andcerebrospinal fluid characteristics: a case series. Arq. Neuro-Psiquiatr, São Paulo, v.76 n.6, p. 373-380, 2018.
11. BRAAK, H.; TREDICI, K.D.; RÜB, U. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003; 24:197–211.
12. BRIGHT, F, WERRY, E.L., DOBSON-STONE, C. et al. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol. 2019; 15(9):540-555.
13. CARACI, F.; MERLO, S.; DRAGO, F.; et al. Rescue of Noradrenergic System as a Novel Pharmacological Strategy in the Treatment of Chronic Pain: Focus on Microglia Activation. Front Pharmacol. 2019 Sep 12; 10:1024. doi: 10.3389/fphar.2019.01024. PMID: 31572196; PMCID: PMC6751320.
14. CAYLOR, J.; REDDY, R.; YIN, S. et al. Spinal cord stimulation in chronic pain: evidence and theory for mechanisms of action. Bioelectron Med 2019; 5: 12
15. CHEN, G.; ZHANG, Y.Q.; QADRI, Y.; SERHAN, C.N.; RU-RONG, J. Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron. 2018 Dec 19; 100 (6):1292-1311. doi: 10.1016/j.neuron.2018.11.009. PMID: 30571942; PMCID: PMC6312407.
16. CHITNIS T, WEINER HL. CNS inflammation and neurodegeneration. J Clin Invest 2017; 127(10):3577–3587.
17. DE VIRGILIO, A.; GRECO, A.; FABBRINI, G. et al. Parkinson’s disease: Autoimmunity and neuroinflammation. Autoimmun Rev 2016;15 (10):1005-1011.
18. DUNLIN, P.; HANANI, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav Immun. 2007 Jul;21 (5):592-8. doi: 10.1016/j.bbi.2006.11.011. Epub 2007 Jan 11. PMID: 17222529.
19. EDVINSSON, L.; HAANES, K.A.; WARFVING, K. Does inflammation have a role in migraine? Nat Rev Neurol. 2019 Aug; 15(8):483-490. doi: 10.1038/s41582-019-0216-y. Epub 2019 Jul 1. PMID: 31263254.
21. GLASS, C.K.; SAIJO, K.; WINNER, B. et al. Mechanisms Underlying Inflammation in Neurodegeneration. Cell 2010; 140:918–934.
22. GOADSBY, P.J.; HOLLAND, P.R.; MARTINS-OLIVEIRA, M.; HOFFMANN, J.; SCHANKIN, C.; AKERMAN, S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol. Rev., 2017, 97(2), 553-622).
23. HASBUN, R. Clinical Features and Diagnosis of Acute Bacterial Meningitis in Adults. UpToDate Feb 5, 2020, access in Dec 18, 2020.
24. HEPPNER FL, RANSOHOFF RM, BECKER B. Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 2015; 16(6):358-372. doi: 10.1038/nrn3880
25. HICKS, C. B.; CLEMENT, M. Syphilis: Epidemiology, pathophysiology, and clinical manifestations in patients without HIV. UpToDate Nov 5, 2020, access in Dec 18, 2020
26. KIM, P.S.; FISHMAN, M.A. Low-Dose Naltrexone for Chronic Pain: Update and Systemic Review. Curr Pain Headache Rep. 2020 Aug 26;24(10):64. doi: 10.1007/s11916-020-00898-0. PMID: 32845365.
27. LYONS, J. Viral Meningitis and Encephalitis. Continuum, Minneapolis, v. 24, n.5, p. 1284-1297, 2018.
28. ILLARIOSHKIN, S.N.; KLYUSHNIKOV, S.A.; VIGONT, V.A. et al. Molecular pathogenesis in Huntington’s Disease. Biochem 2018; 9:1030-1039.OZBEN, T.; OZBEN, S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease. Clin Biochem 2019; 72:87-89
29. LOBSIGER, C.S.; CLEVELAND, D.W. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci 2007; 10:1355–1360.
30. MAETZLER, W.; BERG, D.; SYNOFZIK, M. et al. Autoantibodies against amyloid and glial-derived antigens are increased in serum and cerebrospinal fluid of Lewy body-associated dementias. J Alzheimers Dis 2011; 26:171–179
31. MOSLEY, R.L.; HUTTER-SAUNDERS, J.A.; STONE, D.K. et al. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2:a009381
32. PAPADIMITRIOU, D. LE VERCHE, V. JACQUIER, A. et al. Inflammation in ALS and SMA: sorting out the good from the evil. Neurobiol Dis 2010; 37:493–502.
33. PODDA, G.; NYIRENDA, M.; CROOKS, J. et al. Innate immune responses in the CNS: role of toll-like receptors, mechanisms, and therapeutic opportunities in multiple sclerosis. J Neuroimmune Pharmacol 2013; 8:791–806.
34. PUENTES, F.; TOPPING, J.; KUHLE, J. et al. Immune reactivity to neurofilament proteins in the clinical staging of amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatr 2014; 85(3):274–278. doi: 10.1136/jnnp-2013-305494.
35. RILEY, L. W. Tuberculosis: Natural History, Microbiology, and Pathogenesis. UpToDate Nov 25, 2019, access in Dec 18, 202
36. ROPPER, A. H.; SAMUELS, M. A.; KLEIN, J.P.; SASHANK, P. Viral Infections of the Nervous System and Prion Diseases. In. ROPPER, A.H. et al. Adams and Victor’s Principles of Neurology. New York: McGraw Hill, 2019 (2), p. 763-797
37. RU-RONG, J.; BERTA, T.; NEDERGAARD, M. Glia and pain: is chronic pain a gliopathy? Pain. 2013; 154 Suppl 1(0 1):S10-S28. doi:10.1016/j.pain.2013.06.022
38. SCHINKEL, C., GAERTNER, A; ZASPEL J, et al. Inflammatory mediators are altered in the acute phase of posttraumatic complex regional pain syndrome. Clin J Pain. 2006 Mar-Apr; 22(3):235-9. doi: 10.1097/01.ajp.0000169669.70523.f0. PMID: 16514322.
39. SERHAN, C.N.; CHIANG, N.; VAN DYKE, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008 May; 8(5):349-61. doi: 10.1038/nri2294. PMID: 18437155; PMCID: PMC2744593.
40. SEXTON, A. T. Approach to the Patient with Chronic Meningitis. UpToDate March 10 2020, access in Dec 18 2020.
41. SCHAIN, M., KREISL, W.C. Neuroinflammation in Neurodegenerative Disorders: a Review. Curr Neurol Neurosci Rep 2017; 17(25):1–11
42. SOMMER, C.; LEINDERS, M.; ÜÇEYLER, N. Inflammation in the pathophysiology of neuropathic pain. Pain. 2018 Mar; 159 (3):595-602. doi: 10.1097/j.pain.0000000000001122. PMID: 29447138
43. STA, M.; SYLVA-STEENLAND, R.M.R.; CASULA, M. et al. Innate and adaptive immunity in amyotrophic lateral sclerosis: evidence of complement activation. Neurobiol Dis 2011; 42:211–220.
44. STEPHENSON, J.; NUTMA, E.; VAN DER VALK, P. et al. Inflammation in CNS neurodegenerative diseases. Immunology 2018; 154(2):204-219. doi: 10.1111/imm.12922.
45. THEOHARIDES, T.C.; TSILIONI, I.; BAWAZEER, M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front Cell Neurosci. 2019; 13:353. Published 2019 Aug 2. doi:10.3389/fncel.2019.00353
46. TOWN, T.; TAN, J.; FLAVELL, R.A. et al. T-cells in Alzheimer’s disease. Neuromolecular Med 2005; 7:255–264.
47. VAN NOORT, J.M,].; BAKER, D.; AMOR, S. Mechanisms in the development of multiple sclerosis lesions: reconciling autoimmune and neurodegenerative factors. CNS Neurol Disord Drug Targets 2012; 11:556–569.
48. WOOLF, C.J. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983 Dec 15-21; 306 (5944):686-8. doi: 10.1038/306686a0. PMID: 6656869.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details).

This work and its PDF file(s) are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.