The Genetic and environmental risk Factors of Alzheimer’s disease


The Genetic and environmental risk Factors of Alzheimer’s disease


Jyoti Yadav and Prof. Anoop Kumar Verma

University- King Georges Medical University, Lucknow


international journal of aging research

Alzheimer is one of the most common neurodegenerative disease generally found in the form of dementia in old age population. Advanced age is still considered as most influencing risk factors for this disease. WHO reported that dementia is the seventh leading cause of death in 2018 and affecting about fifty million people worldwide. Aging led to impair protein metabolism in the Alzheimer’s disease. A number of molecular events has been implicated behind this disease. As AD is a chronic neurodegenerative disease and etiology is still unclear, familial AD accounts only 5% of the disease. Then it is important to know about some other hidden risk factors that may play crucial role in the onset of the disease. Thus, this paper focused on the role of genetics, different environmental, oxidative stress factors and its association with the pathogenesis of Alzheimer’s disease.


Keywords: Alzheimer’s disease, Amyloid, Beta, Neurodegenerative and Oxidative stress.


Free Full-text PDF


How to cite this article:
Jyoti Yadav and Anoop Kumar Verma The Genetic and environmental risk Factors of Alzheimer’s disease. International Journal of Aging Research, 2018, 1:16.


References:

1. Goedert, M., and Spillantini, M. G. A century of Alzheimer’s disease. Science. Science 314, 777–781. 2006; doi:10.1126/science.1132814
2. R.D. Terry, R. Katzman. Senile dementia of the Alzheimer type. Ann. Neurol. 1983;14:497–506.
3. Sorbi S, Forleo P, Tedde A, etal. Genetic risk factors in familial Alzheimer’s disease. Mech Ageing Dev. 2001;122:1951–1960.
4. Schellenberg GD, Anderson L, O’dahl S, et al. APP717, APP693, and PRIP gene mutations are rare in Alzheimer disease. Am J Med Genet. 1991;49:511–517.
5. Tanzi RE, Vaula G, Romano DM, et al. Assessment of amyloid beta-protein precursor gene mutations in a large set of familial and sporadic Alzheimer disease cases. Am J Med Genet. 1992;51:273–282.
6. Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Investig. 2005;115:1449–1457.
7. Bu G. Apolipoprotein E and its receptors in Alzheimer’s dis-ease: pathways, pathogenesis and therapy. Nat Rev Neurosci. 2009;10:333–344.
8. F. M. LaFerla and S. Oddo, Alzheimer’s disease: Ab, tau and synaptic dysfunction,Trends Mol.Med. 170–176. 2005; DOI: 10.1016/j.molmed.2005.02.009
9. Hutton M, Perez-Tur J, Hardy J. Geneticsof Alzheimer’s disease. Essays Biochem1998;33:11731.
10. Iwatsubo T, Odaka A, Suzuki N, MizusawaH, Nukina N, Ihara Y. Visualization of A beta42(43) and A beta 40 in senile plaques withend-specific A beta monoclonals: evidencethat an initially deposited species is A beta42(43). Neuron 1994;13:45-53.
11. Esler WP, Wolfe MS. A portrait of Alzheimer secretases new features and familiarfaces. Science 2001;293:1449-54.
12. Sharan, Sumiti, and Pravat Mandal. “Emerging Role of Glutathione inAlzheimer’s Disease,” Journal of Alzheimer’s Disease 2014: 514-29.
13. Bertram L, Tanzi RE. Alzheimer’s disease: one disorder, too many genes? Hum Mol Genet 2004;13:R135–R141. [PubMed: 14764623]
14. Roses AD, Saunders AM, Alberts MA, et al. Apolipoprotein E E4 allele and risk of dementia.JAMA 1995;273:374–375. [PubMed: 7823377]
15. Schellenberg GD. Genetic dissection of Alzheimer disease, heterogeneous disorder. Proc Natl Acad Sci U S A 1995;92:8552–8559. [PubMed: 7567974]
16. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 2001;81:741–766.
[PubMed: 11274343]
17. Couzin J. Genetics. Once shunned, test for Alzheimer’s risk headed to market. Science ;319:1022–1023. [PubMed: 18292309]
18. Coon KD, Myers AJ, Craig DW, et al. A high-density whole-genome association study reveals thatAPOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry 2007;68:613–618. [PubMed: 17474819]
19. Bu, G. (2009). Apolipoprotein E and its receptors in Alzheimer’s disease: path-ways, pathogenesis and therapy. Nat. Rev. Neurosci.10, 333–344. doi: 10.1038/nrn2620
20. Mauch, D. H., Nagler, K., Schumacher, S., Goritz, C., Muller, E. C., Otto, A., et al. (2001). CNS synaptogenesis promoted by glia-derived cholesterol. Science 294,1354–1357. doi: 10.1126/science.294.5545.1354
21. Prieger, F. W. Cholesterol homeostasis and function in neurons of the
central nervous system. Cell. Mol. Life Sci. 2003;60:1158–1171.
22. Mulder, M., Jansen, P. J., Janssen, B. J., van de Berg, W. D., van der Boom, H.,
Havekes, L. M., et al. Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus. Neurobiol. Dis. 2004;16: 212–219. doi: 10.1016/j.nbd.2004.01.015
23. Liu, Q., Trotter, J., Zhang, J., Peters, M. M., Cheng, H., Bao, J., et al. Neuronal LRP1 knockout in adult mice leads to impaired brain lipid metabolism and progressive, age-dependent synapse loss and neurodegeneration. J. Neurosci. 2010;30:17068–17078. doi: 10.1523/JNEUROSCI.4067-10.2010
24. Bertram, L. Alzheimer’s disease genetics current status and future perspectives. Int. Rev. Neurobiol. 2009;84: 167–184. doi: 10.1016/S0074-7742(09)00409-7
25. Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C. Jr., et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat. Genet. 1994;7: 180–184. doi: 10.1038/ ng0694-180.
26. Mahley, R. W., and Huang, Y. Apolipoprotein (apo) E4 and Alzheimer’s disease: unique conformational and biophysical properties of apoE4 can modulate neuropathology. Acta Neurol. Scand. Suppl. 2006;185: 8–14. doi: 10.1111/j.1600-0404. 2006.00679.x
27. Pa, J., Boxer, A., Chao, L. L., Gazzaley, A., Freeman, K., Kramer, J., et al. Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Ann. Neurol. 2009;65: 414–423. doi: 10.1002/ana.21591
28. Condello C., Yuan P. and Grutzendler J. Microglia-Mediated Neuroprotection, TREM2, and Alzheimer’s Disease: Evidence From Optical Imaging. Biological Psychiatry. 2018; 83:377–387 www.sobp.org/journal
29. David V. Hansen, Jesse E. Hanson, and Morgan Sheng. Microglia in Alzheimer’s disease. J. Cell Biol. 2017;217:2 459–472
30. Kleinberger G, Yamanishi Y, Suárez-Calvet M, Czirr E, Lohmann E, Cuyvers E, et al. Trem2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis. Sci Transl Med 2014; 6:243ra86.
31. Sirkis DW, Bonham LW, Aparicio RE, Geier EG, Ramos EM, Wang Q, et al. Rare TREM2 variants associated with Alzheimer’s disease display reduced cell surface expression. Acta Neuropathol Commun 2016;4: 98.
32 Kukull WA, Higdon R, Bowen JD, et al. Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 2002;59:1737–1746. [PubMed: 12433261]
33 Hozumi, I., Hasegawa, T., Honda, A., Ozawa, K., Hayashi, Y., Hashimoto, K.,et al. Patterns of levels of biological metals in CSF differ among neurodegenerative diseases.J. Neurol. Sci. 2011;303: 95–99. doi: 10.1016/j.jns.2011.01.003
34 Ayton, S., Lei, P., and Bush, A. I. Metallostasis in Alzheimer’s disease. Free Radic. Biol. Med. 2013;62:76–89. doi: 10.1016/j.freeradbiomed.2012.10.558
35 Tõugu, V., Karafin, A., Zovo, K., Chung, R. S., Howells, C., West, A. K., et al. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1–42)peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. J. Neurochem., 2009;110: 1784–1795. doi: 10.1111/j.1471-4159.2009.06269.x
36 M.A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell, andW. R. Markesbery,“Copper, iron and zinc in Alzheimer’s disease senile plaques,” Journal of the Neurological Sciences, 1998;158:47–52.
37 J. Y. Lee, I. Mook-Jung, and J. Y. Koh, “Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice,” The Journal of Neuroscience, 1999;19: RC10.
38 J. Zhang, Q. Liu, Q. Chen et al., “Nicotine attenuates beta amyloid induced neurotoxicity by regulating metal homeostasis,” The FASEB Journal, 2006;20:1212–1214.
39 Varadarajan S, Yatin S, Aksenova M,Butterfield DA. Review: Alzheimer’s b-peptideassociated free radical oxidative stressand neurotoxicity. J Struct Biol. 2000;130:184–208.
40 M. Manczak, T. S. Anekonda, E. Henson, B. S. Park, J. Quinn, and P. H. Reddy, “Mitochondria are a direct site of A? accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression,” Human Molecular Genetics, 2006;15: 1437–1449.
41 Enns GM, Kinsman SL, Perlman SL, Spicer KM, Abdenur JE, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 2012;105: 91-102.
42 Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, et al. An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta. 2009;1787: 437-461.
43 Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010; 345: 91-104
44 Ashe KH, Zahs KR. Probing the biology of Alzheimer’s disease in mice. Neuron 2010;66:631–45.
45 K. Stamer, R. Vogel, E. Thies, E. Mandelkow, and E.-M.Mandelkow, “Tau blocks traffic of organelles, neurofilaments,and APP vesicles in neurons and enhances oxidative stress,” Journal of Cell Biology. 2002;156:1051–1063.
46 Fleming JL, Phiel CJ, Toland AE. The role for oxidative stress in aberrant DNA methylation in Alzheimer’s disease. Curr Alzheimer Res. 2012;9:1077-1096.
47 X. Zhu, A. K. Raina, H.-G. Lee, G. Casadesus, M. A. Smith, and G. Perry, “Oxidative stress signalling in Alzheimer’s disease,” Brain Research. 2004;1000:32–39.
48 R. von Bernhardi and J. Eugen´ın, “Alzheimer’s disease: redox dysregulation as a common denominator for diverse pathogenic mechanisms,” Antioxidants and Redox Signaling. 2012;16:974–1031.
49 D. A. Butterfield, A. Gnjec, H. F. Poon et al., “Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer’s disease: an initial assessment,” Journal of Alzheimer’s Disease. 2006;10:391–397.
50 Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis. 2011;26:59-68.
51 Greenough MA, Camakaris J, Bush AI. Metal dyshomeostasis andoxidative stress in Alzheimer’s disease. Neurochem Int. 2013;62:540-555.
52 Chassaing S, Collin F, Dorlet P, Gout J, Hureau C, et al. Copper andheme-mediated Abeta toxicity: redox chemistry, Abeta oxidations and anti-ROScompounds. Curr Top Med Chem. 2012; 12: 2573-2595.
53 Kritchevsky SB, Muldoon MF. Oxidative stress and aging: still a hypothesis. J Am Geriatr Soc. 1996;44: 873-875.
54 Papaliagkas VT. The role of cerebrospinal fluid biomarkers for Alzheimer’s disease diagnosis. where are we now? Recent Pat CNS Drug Discov. 2013;8:70-78.
55 K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer’s disease,” The Lancet, 2006;368:387–403.
56 Monahan, Alicia, “Proposed Mechanism of Alzheimer’s Disease: the Role of Oxidative Stress A Review of Scientific Literature” (2016). Senior Honors Projects. Paper 97.
57 Hane F, Leonenko Z. Effect of metals on kinetic pathways of amyloid-β aggregation. Biomolecules. 2014; 4: 101-116.
58 Pithadia AS, Lim MH. Metal-associated amyloid-β species in Alzheimer’s disease. Curr Opin Chem Biol. 2012;16: 67-73.
59 Bush AI, Pettingell WH, Multhaup G, de Paradis M, Vonsattel JP, Gusella JF, et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994; 265:1464-1467.
60 Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, et al. Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1-42. J Neurochem. 2000;75:1219-1233.