Entropy production as a physical pacemaker of lifespan in mole-rats


Entropy production as a physical pacemaker of lifespan in mole-rats


L. Triana1, G. Cocho2, R. Mansilla3, & J.M. Nieto-Villar4*

1Complete Pharmaceutics, Florida, United States of America.
2Instituto de Física de la UNAM, México
3Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, UNAM, México.
4Department of Chemical-Physics, A. Alzola Group of Thermodynamics of Complex Systems of M.V. Lomonosov Chemistry Chair, Faculty of Chemistry, University of Havana, Cuba.


international journal of aging research

This work discusses the relationship of the biological aging between mole-rats and rats through a unified approach from the perspective of thermodynamics. Taking calorimetric data from some published studies of the metabolism on mole-rats and rats, it is calculated the entropy production rate. It is observed that the entropy production rate in rats decays with chronological age, and develops a kind of first order phase transition. However, the mole-rats, showed that entropy production rate did not change significantly with age and exhibits a slightly higher value as an average compared to the rats analyzed. This result can be interpreted in terms of a mole-rats exhibit a more robustness, i.e. greater plasticity than rats. Furthermore, it is shown that the entropy production rate could be consider as a physical marker of biological age and a predictor of Lifespan.


Keywords: Aging, Longevity, Mole-rats, Metabolic rate, Biological phase transition, Entropy production rate


Free Full-text PDF


How to cite this article:
L. Triana, G. Cocho, R. Mansilla, & J.M. Nieto-Villar. Entropy production as a physical marker of biological age in mole-rats. International Journal of Aging Research, 2018, 1:22. DOI: 10.28933/ijoar-2018-11-0601


References:

1. Schosserer, M., Grubeck-Loebenstein, B., & Grillari, J. (2015). Principles of biological aging. Zeitschrift fur Gerontologie und Geriatrie, 48(3), 285-294.
2. Zhao, Y., Tyshkovskiy, A., Muñoz-Espín, D., Tian, X., Serrano, M., de Magalhaes, J. P., … & Gorbunova, V. (2018). Naked mole rats can undergo developmental, oncogene-induced and DNA damage-induced cellular senescence. Proceedings of the National Academy of Sciences, 115(8), 1801-1806.
3. Magalhães, J. P. D., Costa, J., & Church, G. M. (2007). An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 62(2), 149-160.
4. Sengupta, P. (2013). The laboratory rat: relating its age with human’s. International journal of preventive medicine, 4(6), 624.
5. Seluanov, A., Gladyshev, V. N., Vijg, J., & Gorbunova, V. (2018). Mechanisms of cancer resistance in long-lived mammals. Nature Reviews Cancer, 1.
6. Ruby, J. G., Smith, M., & Buffenstein, R. (2018). Naked mole-rat mortality rates defy gompertzian laws by not increasing with age. Elife, 7, e31157.
7. “Breakthrough of the year 2013. Notable developments”. Science 342 (6165): 1435–1441.
8. Harman, D. (2006). Free radical theory of aging: an update. Annals of the New York Academy of Sciences, 1067(1), 10-21.
9. Harman D. (1956). Aging: a theory based on free radical and radiation chemistry. J Gerontol.;11:298–300.
10. Cutler, R. G. (1986). Aging and oxygen radicals. Physiology of oxygen radicals, 18, 251-285.
11. Sohal, R. S., & Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science, 273(5271), 59-63.
12. Sohal R.S., Metabolic Rate, Free Radicals and Aging, in Free Radicals in Molecular Biology, Aging and Disease, ed. by Armstrong, D. (1984). Free radicals in molecular biology, aging, and disease (Vol. 27). Raven Pr.
13. Hecht, F., Pessoa, C. F., Gentile, L. B., Rosenthal, D., Carvalho, D. P., & Fortunato, R. S. (2016). The role of oxidative stress on breast cancer development and therapy. Tumor Biology, 37(4), 4281-4291.
14. McNab, B. K. (1966). The metabolism of fossorial rodents: a study of convergence. Ecology, 47(5), 712-733.
15. Goldman, B. D., Goldman, S. L., Lanz, T., Magaurin, A., & Maurice, A. (1999). Factors influencing metabolic rate in naked mole-rats (Heterocephalus glaber). Physiology & behavior, 66(3), 447-459.
16. Buffenstein, R., & Yahav, S. (1991). Is the naked mole-rat Hererocephalus glaber an endothermic yet poikilothermic mammal?. Journal of Thermal Biology, 16(4), 227-232.
17. O’Connor, T. P., Lee, A., Jarvis, J. U., & Buffenstein, R. (2002). Prolonged longevity in naked mole-rats: age-related changes in metabolism, body composition and gastrointestinal function. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 133(3), 835-842.
18. Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems (Vol. 191977). Wiley, New York.
19. Nicolis, G., & Nicolis, C. (2012). Foundations of complex systems: emergence, information and predicition. World Scientific.
20. Bizzarri, M. (Ed.). (2018). Systems Biology. Humana Press.
21. Elbert, T., Ray, W. J., Kowalik, Z. J., Skinner, J. E., Graf, K. E., & Birbaumer, N. (1994). Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Reviews, 74(1), 1-47.
22. Lipsitz, L. A., & Goldberger, A. L. (1992). Loss of ‘complexity’ and aging: Potential applications of fractals and chaos theory to senescence. Jama, 267(13), 1806-1809.
23. Alvarado, P., Mansilla, R., Alvarado, P. E., Avila, F. M., Gonzalez, A., & Gonzalez, C. (2015). The Bioelectric Signal of The Electrocardiogram (ekg), Analyzed In Critically Ill Patients, Using Immersion Takens Theorem. In A43. EVOLVING TECHNOLOGIES IN CRITICAL CARE (pp. A1640-A1640). American Thoracic Society.
24. Miquel, J., Economos, A. C., & Johnson Jr, J. E. (1984). A systems analysis—thermodynamic view of cellular and organismic aging. In Aging and Cell Function (pp. 247-280). Springer US.
25. Betancourt-Mar JA, Mansilla R, Cocho G, et al. On the relationship between aging & cancer. MOJ Gerontol Ger. 2018;3(2):163–168. DOI: 10.15406/mojgg.2018.03.00103.
26. Kondepudi, D., & Prigogine, I. (2014). Modern thermodynamics: from heat engines to dissipative structures. John Wiley & Sons.
27. Donder, T., & Van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity. Stanford University Press. Donder, T., & Van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity. Stanford University Press.
28. Prigogine, I. (1967). Introduction to thermodynamics of irreversible processes. New York: Interscience, 1967, 3rd ed.
29. Zotin A.I., (1988). Thermodynamic Principles and Reaction of Organisms, (in Russian), Moscow, Nauka.
30. Kibler, H. H., & Brody, S. (1942). Metabolism and Growth Rate of Rats: Two Figures. The Journal of Nutrition, 24(5), 461-468.
31. Van der Waals, J. D. (1910). The equation of state for gases and liquids. Nobel lectures in Physics, 1, 254-265.
32. Izquierdo-Kulich, E., Alonso-Becerra, E., & Nieto-Villar, J. M. (2011). Entropy production rate for avascular tumor growth. Journal of Modern Physics, 2(06), 615.
33. Izquierdo-Kulich, E., Rebelo, I., Tejera, E., & Nieto-Villar, J. M. (2013). Phase transition in tumor growth: I avascular development. Physica A: Statistical Mechanics and its Applications, 392(24), 6616-6623.
34. Llanos-Pérez, J. A., Betancourt-Mar, A., De Miguel, M. P., Izquierdo-Kulich, E., Royuela-García, M., Tejera, E., & Nieto-Villar, J. M. (2015). Phase transitions in tumor growth: II prostate cancer cell lines. Physica A: Statistical Mechanics and its Applications, 426, 88-92.
35. Knight, M. H. (1986). Thermoregulation and evaporative water loss in growing African giant rats Cricetomys gambianus. African Zoology, 21(4), 289-293.
36. Kyriazis, M. (2003). Practical applications of chaos theory to the modulation of human ageing: nature prefers chaos to regularity. Biogerontology, 4(2), 75-90.
37. Nieto-Villar, J. M., Quintana, R., & Rieumont, J. (2003). Entropy production rate as a Lyapunov function in chemical systems: Proof. Physica Scripta, 68(3), 163.
38. Izquierdo-Kulich, E., Rebelo, I., Tejera, E., & Nieto-Villar, J. M. (2013). Phase transition in tumor growth: I avascular development. Physica A: Statistical Mechanics and its Applications, 392(24), 6616-6623.
39. Llanos-Pérez, J. A., Betancourt-Mar, A., De Miguel, M. P., Izquierdo-Kulich, E., Royuela-García, M., Tejera, E., & Nieto-Villar, J. M. (2015). Phase transitions in tumor growth: II prostate cancer cell lines. Physica A: Statistical Mechanics and its Applications, 426, 88-92.
40. Llanos-Pérez, J. A., Betancourt-Mar, J. A., Cocho, G., Mansilla, R., & Nieto-Villar, J. M. (2016). Phase transitions in tumor growth: III vascular and metastasis behavior. Physica A: Statistical Mechanics and its Applications, 462, 560-568.
41. Betancourt-Mar, J. A., Llanos-Pérez, J. A., Cocho, G., Mansilla, R., Martin, R. R., Montero, S., & Nieto-Villar, J. M. (2017). Phase transitions in tumor growth: IV relationship between metabolic rate and fractal dimension of human tumor cells. Physica A: Statistical Mechanics and its Applications, 473, 344-351.
42. Martin, R. R., Montero, S., Silva, E., Bizzarri, M., Cocho, G., Mansilla, R., & Nieto-Villar, J. M. (2017). Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?. Physica A: Statistical Mechanics and its Applications.
43. Cutler, R. G. (1985). Dysdifferentiative hypothesis of aging: a review. Molecular Biology of Aging: Gene Stability and Gene Expression, 307-340.
44. Cutler, R. G. (1985). Antioxidants and longevity of mammalian species. In Molecular biology of aging (pp. 15-73). Springer US.
45. Kirkham, F., Mills, C., Nambier, K., Timeyin, J., Davies, K. A., Kern, F., … & Rajkumar, C. (2017). [op. 2c. 07] Are You Really As Old As Your Arteries? Predicting Biological Age Using Cardio-ankle Vascular Index As A Marker Of Vascular Stiffness. Journal of Hypertension, 35, e19-e20.
46. Strehler BL (1977) Time, cells and aging, 2nd, Academic, New York.
47. Kirby, A. M., Fairman, G. D., & Pamenter, M. E. (2018). Atypical behavioural, metabolic and thermoregulatory responses to hypoxia in the naked mole rat (Heterocephalus glaber). Journal of Zoology.
48. Schielke, C. K. M., Burda, H., Henning, Y., Okrouhlík, J., & Begall, S. (2017). Higher resting metabolic rate in long-lived breeding Ansell’s mole-rats (Fukomys anselli). Frontiers in zoology, 14(1), 45.
49. Bennett, N. C., Aguilar, G. H., Jarvis, J. U. M., & Faulkes, C. G. (1994). Thermoregulation in three species of Afrotropical subterranean mole-rats (Rodentia: Bathyergidae) from Zambia and Angola and scaling within the genus Cryptomys. Oecologia, 97(2), 222-227.
50. Buffenstein, R. (2008). Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species. Journal of Comparative Physiology B, 178(4), 439-445.
51. Skulachev, V. P., Holtze, S., Vyssokikh, M. Y., Bakeeva, L. E., Skulachev, M. V., Markov, A. V., … & Sadovnichii, V. A. (2017). Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans). Physiological reviews, 97(2), 699-720.
52. Redman, L. M., Smith, S. R., Burton, J. H., Martin, C. K., Il’yasova, D., & Ravussin, E. (2018). Metabolic slowing and reduced oxidative damage with sustained caloric restriction support the rate of living and oxidative damage theories of aging. Cell metabolism, 27(4), 805-815.
53. Triana, L., Cocho, G., Mansilla, R., & Nieto-Villar, J. M. (2018). Deciphering the longevity of the mole-rats. International Journal of Aging Research, 1.
54. Lewis, K. N., Mele, J., Hornsby, P. J., & Buffenstein, R. (2012). Stress resistance in the naked mole-rat: the bare essentials–a mini-review. Gerontology, 58(5), 453-462.
55. Delaney, M. A., Nagy, L., Kinsel, M. J., & Treuting, P. M. (2013). Spontaneous Histologic Lesions of the Adult Naked Mole Rat (Heterocephalus glaber) A Retrospective Survey of Lesions in a Zoo Population. Veterinary pathology, 50(4), 607-621.