ROLE AND DYSFUNCTION OF THE EMBRYONIC DEVELOPMENT PATHS AND POST-NATAL PERSISTENCE. WNT / BETA-CATENINE SIGNALING ROAD INVOLVEMENT


ROLE AND DYSFUNCTION OF THE EMBRYONIC DEVELOPMENT PATHS AND POST-NATAL PERSISTENCE. WNT / BETA-CATENINE SIGNALING ROAD INVOLVEMENT


Diego Chaves Cabral1, Igor Rodrigues dos Santos1, Lívia Maria Gomes de Melo1, Rafael Miranda de Sousa Lima1, Sarah Mendes Fabrício1, Fálba Bernadete Ramos dos Anjos2

1Nutrition Science Students – Federal University of Pernambuco; 2Professor / Researcher, Department of Histology and Embryology – Federal University of Pernambuco.


International journal of Pediatric research and reviews-2d

Introduction: Gene signaling is an essential input for successful embryonic events. Through gene transport pathways, such as the Wnt / β-catenin pathway, embryonic developments are orchestrated harmoniously with the other physiological functions.

Objective: This is an integrative literature review in order to analyze the scientific evidence the participation of the Wnt family in embryonic events.

Methodology: An extensive review was performed on the Lilacs, PubMed and SciELO databases with full articles published in Portuguese, English and Spanish.

Results and Discussion: Wingless (Wnt) belongs to the group of molecular flags, from a family of genes that act in various embryonic processes. The phenotypes of mutant embryos revealed that these genes act on the morphogenesis of numerous tissues and organs. Wnts are part of a family of signaling proteins and participate in autocrine and paracrine mechanisms, determination of gonads, cancer, glioblastoma, as well as the pathway involved in cellular communication, environmental micro-modulation and immune response.

Conclusion: Cellular and molecular events depend on signaling pathways that are controlled by the Wnt family of genes, which participate in prenatal and postnatal embryonic events.


Keywords: Wnt, signaling, carcinogenic, embryonic development.

Free Full-text PDF


How to cite this article:
Diego Chaves Cabral, Igor Rodrigues dos Santos, Lívia Maria Gomes de Melo, Rafael Miranda de Sousa Lima, Sarah Mendes Fabrício, Fálba Bernadete Ramos dos Anjos. ROLE AND DYSFUNCTION OF THE EMBRYONIC DEVELOPMENT PATHS AND POST-NATAL PERSISTENCE. WNT / BETA-CATENINE SIGNALING ROAD INVOLVEMENT. International Journal of Pediatric Research and Reviews, 2020, 3:22.  DOI:10.28933/ijoprr-2020-01-2205


References

1. CHEN X, YANG J, EVANS PM, LIU C.Wnt signaling: the good and the bad. Acta Biochim Biophys Sin (Shanghai). 2008;40(7):577-94.
2. SADLER, THOMAS W. Langman embriologia médica. 16. ed. Rio de Janeiro: Guanabara Koogan, 2017
3. THOMPSON, M.D., MONGA, S.P. WNT/beta-catenin signaling in liver health and disease. Hepatology 45, 1298-305. 2007.
4. KUULASMAA T, JAASKELAINEN J, SUPPOLA S, PIETILAINEN T, HEIKKILA P, AALTOMAA S, et al.WNT-4 mRNA expression in human adrenocortical tumors and cultured adrenal cells. Horm Metab Res. 2008;40(10):668-73.
5. ROEL NUSSE, CATRIONA Y. LOGAN. The Wnt signaling pathway in development and disease. Annual Review of Cell and Developmental Biology 2004 20:1, 781-810.
6. FUERER, C. NUSSE, R. ANDTEN BERGE, D. (2008), Wnt signalling in development and disease. EMBO reports, 9: 134-138.
7. GORDON MD AND NUSSE R. s Multiple Receptors, and Multiple Wnt Signaling: Multiple Pathways, Transcription Factors. . J. Biol. Chem. 2006, 281:22429-22433.
8. L. CHARLES MURTAUGH (2008) The what, where, when and how of Wnt/β-catenin signaling in pancreas development, Organogenesis, 4:2, 81-86, DOI: 10.4161/org.4.2.5853.
9. DALE TC. Signal transduction by the Wnt family of ligands. Biochem J 1998;329:209-23.
10. ROHIT N.KULKARNI, HANNAH J.WELTERS. Wnt signaling: relevance to β-cellbiology and diabetes,volume 19, Issue 10, December 2008, Pages 349-355.3.
11. JORDAN A, MOHAMMED M, SAUNDERS TC, DÉLOT E, CHEN X- N, DEWING P, et al. Up-regulation of WNT-4 signaling and dosage sensitive sex reversal in humans. Am J Hum Genet 2001;68:1102-9.
12. MASCHIO, Daniela Aparecida. Possível ativação da via de sinalização Wnt/beta-catenina no processo de hiperplasia compensatória da célula beta pancreática em modelo animal de resistência periférica à insulina. 2014. 83 f. Dissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia, Campinas, SP..
13. COBURN, K.L.A. Determinantes celulares e moleculares envolvidos na formação da cabeça em vertebrados. Rio de Janeiro, Universidade Federal do Rio de Janeiro/PCM, 2008.
14. Kernahan, D.A & Stark, R.B.,(1958) A new classification for cleft lip and cleft palate. Plast. Reconstr. Surg. 22:435.
15. VAINIO S, HEIKKILÄ M, KISPERT A, CHIN N, MCMAHON AP. Female development in mammals is regulated by Wnt-4 signaling. Nature 1999;397: 405-9.
16. ANITA C. HALL, FIONA R. LUCAS, AND PATRICIA C. SALINAS. Axonal Remodeling and Synaptic Differentiation in the Cerebellum Is Regulated by WNT-7a Signaling. Cell, Vol. 100, 525–535, March 3, 2000.
17. PARR, B., MCMAHON, A Sexuallydimorphicdevelopmentofthemammalianreproductivetractrequires Wnt-7a. Nature 395, 707–710 (1998)
18. AMY C. ARNOLD, DAVID ROBERTSON Diabetes Oct2015, 64 (10) 33423344;
19. KATSUYOSHI TAKAOKA, HIROSHI HAMADA. Development 2012 139:3-14;
20. JAIME A. RIVERA-PÉREZ, ANNA-KATERINA HADJANTONAKIS. The Dynamics of Morphogenesis in the Early Mouse Embryo. november, 15, 2019.
21. VAN DEN BRINK, S. C., BAILLIE-JOHNSON, P., BALAYO, T., HADJANTONAKIS, A.-K., NOWOTSCHIN, S., TURNER, D. A., & MARTINEZ ARIAS, A. (2014). Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development, 141(22), 4231–4242.
22. CURTIN JA, QUINT E, TSIPOURI V, ARKELL RM, CATTANACH B, COPP AJ, ET AL. Mutation of Celsr disrupts planar polarity of inner ear hair cells and causes severe neural tube defects in the mouse. Curr Biol. 2003; 13:1129\u20131133. [PubMed: 12842012].
23. ANDRÉS M. BRATT-LEAL, RICHARD L. CARPENEDO, TODD C. MCDEVITT. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation.February,2009.
24. LEAL LF, MERMEJO LM, RAMALHO LZ, MARTINELLI CE, JR., YUNES JA, SEIDINGER AL, et al. Wnt/{beta}-Catenin Pathway Deregulation in Childhood Adrenocortical Tumors. The Journal of clinical endocrinology and metabolism. 2011.
25. TISSIER F, CAVARD C, GROUSSIN L, PERLEMOINE K, FUMEY G, HAGNERE AM, et al.Mutations of beta-catenin in adrenocortical tumors: activation of the Wnt signaling pathway is a frequent event in both benign and malignant adrenocortical tumors. CancerRes. 2005;65(17):7622-7.
26. RAGAZZON B, LIBE R, GAUJOUX S, ASSIE G, FRATTICCI A, LAUNAY P, et al. Transcrip to meanalysis reveals that p53 and {beta}-catenin alterations occur in a group of aggressive adrenocortical cancers. Cancer Res. 2010;70(21):8276-81.
27. ASSIE G, LETOUZE E, FASSNACHT M, JOUINOT A, LUSCAP W, BARREAU O, et al. Integrated genomic characterization of adrenocortical carcinoma. Nat Genet. 2014;46(6):607-12.
28. BAZAN, J. F., JANDA, C. Y., & GARCIA, K. C. (2012). Structural Architecture and Functional Evolution of Wnts. Developmental Cell, 23(2), 227–232.
29. BRYAN T. MACDONALD,JUDITH KIMBLE. A New Look at TCF and β-Catenin through the Lens of a Divergent C. elegans Wnt Pathway Developmental Cell, Volume 17, Issue 1, 21 July 2009, Pages 27-34.
30. TERRY P. YAMAGUCHI. Heads ortails: Wnts and anterior–posterior patterning. 12 September 2001.
31. KIM A, GIORDANO TJ, KUICK R, SERECKY K, HAMMER GD. Wnt/beta catenin signaling in adrenocortical stem/progenitor cells: implications for adrenocortical carcinoma. Ann Endocrinol (Paris). 2009;70(3):156.
32. Joerg Huelsken, Regina Vogel, Volker Brinkmann, Bettina Erdmann, Carmen Birchmeier,Walter Birchmeir The Journal of Cell Biology Feb 2000,148 (3)567578;
33. CHEYETTE, B.N.R., WAXMAN, J.S., MILLER, J.R., TAKEMARU, K., SHELDAHL, L.C., KHLEBTSOVA, N., FOX, E.P., EARNEST, T. & MOON, R.T. 2002. Dapper, a Dishevelled-associated antagonist of beta catenin and JNK signaling, is required for notochord formation. Dev. Cell 2: 449-461.
34. GLOY, J., HIKASA, H. & SOKOL, S.Y. 2002. Frodo interacts with Dishevelled to transduce Wnt signals. Nat. Cell. Biol. 4: 351-357.
35. HUNTER, N.L., HIKASA, H., DYMECKI, S.M. & SOKOL, S.Y. 2006. Vertebrate homologues of Frodo are dynamically expressed during embryonic development in tissues undergoing extensive morphogenetic movements. Dev. Dyn. 235 (1): 279-284.
36. GAO, X., WEN, J., ZHANG, L., L , X., N I ING, Y., MENG, A. & CHEN, Y.G. 2008. Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J. Biol. Chem. 283 (51): 35679-35688.
37. POLAKIS, P. 2000. Wnt signaling and cancer. Genes Dev. 14: 1837-1851.
38. MOON, R.T., KOHN, A.D., DE FERRARI, G.V. & KAYKAS, A. 2004. WNT and beta-catenin signalling: diseases and therapies. Nat. Rev. Genet. 5 (9): 691-701.
39. NIBALDO C. INESTROSA, LORENA VARELA-NALLAR, Wnt signaling in the nervous system and in Alzheimer’s disease, Journal of Molecular Cell Biology, Volume 6, Issue 1, February 2014, Pages 64–74.
40. SHAWLOT W, BEHRINGER RR (1995). Requirement for Lima in head-organizer function. Nature 374:425-430.
41. TANG, K., XIE, X., PARK, J.-I., JAMRICH, M., TSAI, S., & TSAI, M.-J. (2011). COUP-TFs regulate eye development by controlling factors essential for optic vesicle morphogenesis. Development, 137(5), 725–734.