Progressive exercise therapy in muscle dystrophy: two case studies in adult patients with DM2 and LGMD2D

Nico Nitzsche1*, Noah Augustin1, Michael Klotz1, Henry Schulz1

1Professorship of Sports Medicine/ Sports Biology, TU Chemnitz, Thüringer Weg 11, 09126 Chemnitz, Germany.

These two case studies aimed to investigate the effect and acceptance of progressive strength training in patients with muscular dystrophy. Case 1 completed a progressive resistance exercise over 12 weeks. The results showed increases in leg extensor strength, hand strength and balance. Furthermore, the anaerobic test showed an increase in the maximum glycolysis rate. Creatine kinase levels were reduced while maintaining low muscle soreness. Case 2 conducted seven weeks of electronically assisted strength training and electromyostimulation. In the course of the training, an increase in the self-contribution of the performance in the execution of movement was observed in the assisted strength training. Furthermore, an increase in the intensity of external stimuli was observed. The creatine kinase showed a reduction with physiological behavior of muscle soreness. The results demonstrate the acceptance and feasibility of progressive exercise protocols used to increase performance in two cases of muscular dystrophy.

Keywords: Muscle dystrophy; Resistance exercise; Exercise therapy; Muscle soreness; Creatine kinase

Free Full-text PDF

How to cite this article:
Nico Nitzsche, Noah Augustin, Michael Klotz, Henry Schulz. Progressive exercise therapy in muscle dystrophy: two case studies in adult patients with DM2 and LGMD2D. International Journal of Sports Medicine and Rehabilitation, 2021; 4:17. DOI: 10.28933/ijsmr-2020-11-2605


1. Aldehag, A. S., Jonsson, H., & Ansved, T. [Tor] (2005). Effects of a hand training programme in five patients with myotonic dystrophy type 1. Occupational Therapy International, 12(1), 14–27.
2. Ansved, T. [T.] (2001). Muscle training in muscular dystrophies. Acta Physiologica Scandinavica, 171(3), 359–366.
3. Berthelsen, M. P., Husu, E. [E.], Christensen, S. B., Prahm, K. P. [K. P.], Vissing, J. [J.], & Jensen, B. R. (2014). Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy. Neuromuscular Disorders : NMD, 24(6), 492–498.
4. Böning, D. (2002). Muskelkater. Retrieved from
5. Chisari, C., Bertolucci, F., Dalise, S., & Rossi, B. (2013). Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in myotonic dystrophy: A pilot study. Journal of NeuroEngineering and Rehabilitation, 10(1), 94.
6. Colson, S. S., Benchortane, M., Tanant, V., Faghan, J.‑P., Fournier-Mehouas, M., Benaïm, C., . . . Sacconi, S. (2010). Neuromuscular electrical stimulation training: A safe and effective treatment for facioscapulohumeral muscular dystrophy patients. Archives of Physical Medicine and Rehabilitation, 91(5), 697–702.
7. Cudia, P., Weis, L., Baba, A., Kiper, P., Marcante, A., Rossi, S., . . . Piccione, F. (2016). Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study. American Journal of Physical Medicine & Rehabilitation, 95(11), 809–817.
8. Day, J. W., Ricker, K., Jacobsen, J. F., Rasmussen, L. J., Dick, K. A., Kress, W., . . . Ranum, L. P. W. (2003). Myotonic dystrophy type 2: Molecular, diagnostic and clinical spectrum. Neurology, 60(4), 657–664.
9. Di Mauro, S., Angelini, C. [C.], & Catani, C. (1967). Enzymes of the glycogen cycle and glycolysis in various human neuromuscular disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 30(5), 411–415.
10. Finsterer, J. (2004). Klinik und Genetik der Gliedergürteldystrophien [Limb girdle muscular dystrophies]. Der Nervenarzt, 75(12), 1153–1166.
11. Fontes-Oliveira, C. C., Steinz, M., Schneiderat, P., Mulder, H., & Durbeej, M. (2017). Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Scientific Reports, 7(1), 45272.
12. Gagnon, C. [Cynthia], Petitclerc, É., Kierkegaard, M. [Marie], Mathieu, J., Duchesne, É., & Hébert, L. J. (2018). A 9-year follow-up study of quantitative muscle strength changes in myotonic dystrophy type 1. Journal of Neurology, 265(7), 1698–1705.
13. Gutenbrunner, C. (2000). Circadian variations of the serum creatine kinase level–a masking effect? Chronobiology International, 17(4), 583–590.
14. Hammarén, E., Lindberg, C., & Kjellby-Wendt, G. (2015). Effects of a balance exercise programme in myotonic dystrophy type 1: A pilot study. European Journal of Physiotherapy, 17(3), 123–131.
15. Haun, C. T., Vann, C. G., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., . . . Roberts, M. D. (2019). Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PloS One, 14(6), e0215267.
16. Kenner, J. E. (2011). Inzidenzschätzung der Gliedergürtelmuskeldystrophien für Deutschland. Universität Würzburg. Retrieved from
17. Kierkegaard, M. [M.], Harms-Ringdahl, K., Edström, L., Widén Holmqvist, L., & Tollbäck, A. (2011). Feasibility and effects of a physical exercise programme in adults with myotonic dystrophy type 1: A randomized controlled pilot study. Journal of Rehabilitation Medicine, 43(8), 695–702.
18. Komi, P. V. (2003). Strength and Power in Sport. Oxford, UK: Blackwell Science Ltd.
19. Lindeman, E., Leffers, P., Spaans, F., Drukker, J., Reulen, J., Kerckhoffs, M., & Koke, A. (1995). Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: A randomized clinical trial. Archives of Physical Medicine and Rehabilitation, 76(7), 612–620.
20. Lindeman, E., Spaans, F., Reulen, J., Leffers, P., & Drukker, J. (1999). Progressive resistance training in neuromuscular patients. Effects on force and surface EMG. Journal of Electromyography and Kinesiology, 9(6), 379–384.
21. Liu, W., Pajusalu, S., Lake, N. J., Zhou, G., Ioannidis, N., Mittal, P., . . . Lek, M. (2019). Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. (1-9): Genetics in Medicine.
22. Lodi, R., Kemp, G. J., Muntoni, F., Thompson, C. H., Rae, C., Taylor, J., . . . Taylor, D. J. (1999). Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain, 122 (Pt 1)(1), 121–130.
23. Mader, A. (1994). Die Komponenten der Stoffwechselleistung in den leichtathletischen Ausdauerdisziplinen-Bedeutung für die Wettkampfleistung und Möglichkeiten zu ihrer Bestimmung.: Neue Tendenzen im Ausdauertraining, 12.
24. Mah, J. K., Korngut, L., Fiest, K. M., Dykeman, J., Day, L. J., Pringsheim, T., & Jette, N. (2016). A Systematic Review and Meta-analysis on the Epidemiology of the Muscular Dystrophies. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 43(1), 163–177.
25. Meola, G. [Giovanni] (2013). Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies. Acta Myologica : Myopathies and Cardiomyopathies : Official Journal of the Mediterranean Society of Myology, 32(3), 154–165. Retrieved from
26. Missaoui, B., Rakotovao, E., Bendaya, S., Mane, M., Pichon, B., Faucher, M., & Thoumie, P. (2010). Posture and gait abilities in patients with myotonic dystrophy (Steinert disease). Evaluation on the short-term of a rehabilitation program. Annals of Physical and Rehabilitation Medicine, 53(6-7), 387–398.
27. Neumayr, A. (2008). Häufigkeit der proximalen myotonen Myopathie (PROMM/DM2) im Vergleich zur Myotonen Dystrophie (DM1) in der deutschen Bevölkerung. Retrieved from
28. Nitzsche, N., Lenz, J. C., Voronoi, P., & Schulz, H. (2020). Adaption of Maximal Glycolysis Rate after Resistance Exercise with Different Volume Load. Sports Medicine International Open, 4(2), E39-E44.
29. Northoff, H. (2013). Exercise Immunolgy Review: An official Publication of ISEI and DGSP. (19).
30. Orngreen, M. C., Olsen, D. B., & Vissing, J. [John] (2005). Aerobic training in patients with myotonic dystrophy type 1. Annals of Neurology, 57(5), 754–757.
31. Roussel, M.‑P., Morin, M., Gagnon, C. [C.], & Duchesne, E. (2019). What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. BMC Musculoskeletal Disorders, 20(1), 101.
32. Schoser, B. [Benedikt], & Timchenko, L. (2010). Myotonic dystrophies 1 and 2: Complex diseases with complex mechanisms. Current Genomics, 11(2), 77–90.
33. Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training Monitoring for Resistance Exercise: Theory and Applications. Sports Medicine, 46(5), 687–698.
34. Siciliano, G., Mancuso, M., Tedeschi, D., Manca, M., Renna, M., Lombardi, V., . . . Murri, L. (2001). Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Research Bulletin, 56(3-4), 405–410.
35. Siciliano, G., Simoncini, C., Giannotti, S., Zampa, V., Angelini, C. [C.], & Ricci, G. (2015). Muscle exercise in limb girdle muscular dystrophies: Pitfall and advantages. Acta Myologica, 34(1), 3–8.
36. Smith, K., & Pucillo, E. (2018). The High-Level Mobility Assessment Tool (HiMAT) in Myotonic Dystrophy Type 2: A Case Report. SOAR@USA Physical Therapy Collection. Retrieved from
37. Suominen, T., Bachinski, L. L., Auvinen, S., Hackman, P., Baggerly, K. A., Angelini, C. [Corrado], . . . Udd, B. [Bjarne] (2011). Population frequency of myotonic dystrophy: Higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. European Journal of Human Genetics : EJHG. (7), 776–782.
38. Sveen, M. L., Jeppesen, T. D., Hauerslev, S., Køber, L., Krag, T. O. [T. O.], & Vissing J. (2008). Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain : A Journal of Neurology, 131(Pt 11), 2824–2831.
39. Sveen, M.‑L., Andersen, S. P., Ingelsrud, L. H., Blichter, S., Olsen, N. E., Jønck, S., . . . Vissing, J. [John] (2013). Resistance training in patients with limb-girdle and becker muscular dystrophies. Muscle & Nerve, 47(2), 163–169.
40. Tollbäck, A., Eriksson, S., Wredenberg, A., Jenner, G., Vargas, R., Borg, K., & Ansved, T. [T.] (1999). Effects of high resistance training in patients with myotonic dystrophy. Scandinavian Journal of Rehabilitation Medicine, 31(1), 9–16.
41. Tramonti, C., Dalise, S., Bertolucci, F., Rossi, B., & Chisari, C. (2014). Abnormal Lactate Levels Affect Motor Performance in Myotonic Dystrophy Type 1. European Journal of Translational Myology, 24(4), 4726.
42. Udd, B. [B.], Meola, G. [G.], Krahe, R. [R.], Wansink, D. G., Bassez, G., Kress, W., . . . Moxley, R. (2011). Myotonic dystrophy type 2 (DM2) and related disorders report of the 180th ENMC workshop including guidelines on diagnostics and management 3-5 December 2010, Naarden, The Netherlands. Neuromuscular Disorders, 21(6), 443–450.
43. Udd, B. [Bjarne], & Krahe, R. [Ralf] (2012). The myotonic dystrophies: Molecular, clinical, and therapeutic challenges. The Lancet Neurology, 11(10), 891–905.
44. Vissing, C. R., Preisler, N., Husu, E. [Edith], Prahm, K. P. [Kira P.], & Vissing, J. [John] (2014). Aerobic training in patients with anoctamin 5 myopathy and hyperckemia. Muscle & Nerve, 50(1), 119–123.

Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)

CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.