Xanthigen® reduces lipid deposition and improves stress resistance in Caenorhabditis elegans


Xanthigen® reduces lipid deposition and improves stress resistance in Caenorhabditis elegans


María Dolores Jimenez1, Laura López-Ríos2*, Rubén Pérez-Machín2, Ricardo Chirino3, Barbara Davis4, Elena Talero1#, Virginia Motilva1#

1Department of Pharmacology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain; 2Nektium Pharma SL, Las Palmas, Spain; 3Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Science, University of Las Palmas de Gran Canaria (ULPGC), Las Palmas, Spain; 4PLT Health Solutions, Inc., Morristown, New Jersey, USA


Xanthigen® is a nutraceutical combination of two well-known natural products, brown seaweed extract (rich in fucoxanthin) and pomegranate seed oil (rich in punicic acid), and it has been designed to use in weight management, in conjunction with a calorie restricted diet. In the nematode Caenorhabditis elegans Xanthigen® treatment caused a significant reduction in lipid deposition in wild-type N2 (WT-N2) animals but not in sirt-2.1-deficient strain, which raises the possibility that the prolipolytic or anti-lipogenic effect of Xanthigen® in these animals is mediated through Sirtuin 2.1 activation. This response has been well described for Xanthigen® in cell cultures and other animal models. In addition, Xanthigen® treatment conferred to both strains an increased resistance to thermal and oxidative stress, which opens the possibility that the effects of Xanthigen® are not mediated solely by Sirtuin 2.1 activation. We therefore explored whether Xanthigen® could activate diverse defence mechanisms such as DAF-16 activation, or GST induction in response to xenobiotics, by using the strains TJ356, CL2070 and CL2166, stably expressing Pdaf-16::GFP, Phsp-16.2::GFP and Pgst-4::GFP, respectively. Xanthigen® treatment provoked neither DAF-16 translocation to the nucleus nor increased expression of HSP16.2 and GST4, which opens the possibility that different mechanisms other than DAF-16 and those involved in xenobiotic responses, are activated by Xanthigen® and are capable of conferring to the nematode an increased resistance to thermal or oxidative stress.


Keywords: Xanthigen®, fucoxanthin, punicic acid, Caenorhabditis elegans, sirtuin 2.1, lipid deposition, thermal stress, oxidative stress


Free Full-text PDF


How to cite this article:
María Dolores Jimenez, Laura López-Ríos, Rubén Pérez-Machín, Ricardo Chirino, Barbara Davis, Elena Talero, Virginia Motilva. Xanthigen® reduces lipid deposition and improves stress resistance in Caenorhabditis elegans. Journal of Herbal Medicine Research, 2020,5:41. DOI: 10.28933/jhmr-2019-1805


References:

1. Cuevas García-Dorado, S., Cornselsen, L., Smith, R., Walls, H., 2019. Economic globalization, nutrition and health: a review of quantitative evidence. Global. Health 15, 15. https://doi.org/10.1186/s12992-019-0456-z
2. Lenz, M., Richter, T., Mühlhauser, I., 2009. The morbidity and mortality associated with overweight and obesity in adulthood: a systematic review. Dtsch. Arztebl. Int. 106, 641–8. https://doi.org/10.3238/arztebl.2009.0641
3. The GBD 2015 Obesity collaborators, 2017. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 377, 13–27. https://doi.org/10.1056/NEJMoa1614362
4. Lai, C.-S., Wu, J.-C., Ho, C.-T., Pan, M.-H., 2017. Chemoprevention of obesity by dietary natural compounds targeting mitochondrial regulation. Mol. Nutr. Food Res. 61, 1600721. https://doi.org/10.1002/mnfr.201600721
5. Zsiborás, C., Mátics, R., Hegyi, P., Balaskó, M., Pétervári, E., Szabó, I., Sarlós, P., Mikó, A., Tenk, J., Rostás, I., Pécsi, D., Garami, A., Rumbus, Z., Huszár, O., Solymár, M., 2016. Capsaicin and capsiate could be appropriate agents for treatment of obesity: A meta-analysis of human studies. Crit. Rev. Food Sci. Nutr. 1–9. https://doi.org/10.1080/10408398.2016.1262324
6. Abidov, M., Ramazanov, Z., Seifulla, R., Grachev, S., 2010. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes. Obes. Metab. 12, 72–81. https://doi.org/10.1111/j.1463-1326.2009.01132.x
7. López-Rios, L., Vega, T., Chirino, R., Jung, J.C., Davis, B., Pérez-Machín, R., Wiebe, J.C., 2018. Toxicological assessment of Xanthigen® nutraceutical extract combination: Mutagenicity, genotoxicity and oral toxicity. Toxicol. Reports 5, 1021–1031. https://doi.org/10.1016/J.TOXREP.2018.10.007
8. Rodríguez-Luna, A., Ávila-Román, J., González-Rodríguez, M., Cózar, M., Rabasco, A., Motilva, V., Talero, E., 2018. Fucoxanthin-Containing Cream Prevents Epidermal Hyperplasia and UVB-Induced Skin Erythema in Mice. Mar. Drugs 16, 378. https://doi.org/10.3390/md16100378
9. Wang, Z., Li, H., Dong, M., Zhu, P., Cai, Y., 2019. The anticancer effects and mechanisms of fucoxanthin combined with other drugs. J. Cancer Res. Clin. Oncol. 145, 293–301. https://doi.org/10.1007/s00432-019-02841-2
10. Muradian, K., Vaiserman, A., Min, K.-J., Fraifeld, V.E., 2015. Fucoxanthin and lipid metabolism: A minireview. Nutr. Metab. Cardiovasc. Dis. 25, 891–7. https://doi.org/10.1016/j.numecd.2015.05.010
11. Mikami, N., Hosokawa, M., Miyashita, K., Sohma, H., Ito, Y.M., Kokai, Y., 2017. Reduction of HbA1c levels by fucoxanthin-enriched akamoku oil possibly involves the thrifty allele of uncoupling protein 1 (UCP1): a randomised controlled trial in normal-weight and obese Japanese adults. J. Nutr. Sci. 6, e5. https://doi.org/10.1017/jns.2017.1
12. Aruna, P., Venkataramanamma, D., Singh, A.K., Singh, R.P., 2016. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 15, 16–27. https://doi.org/10.1111/1541-4337.12171
13. Hu, X., Li, Y., Li, C., Fu, Y., Cai, F., Chen, Q., Li, D., 2012. Combination of fucoxanthin and conjugated linoleic acid attenuates body weight gain and improves lipid metabolism in high-fat diet-induced obese rats. Arch. Biochem. Biophys. 519, 59–65. https://doi.org/10.1016/j.abb.2012.01.011
14. Tsukui, T., Konno, K., Hosokawa, M., Maeda, H., Sashima, T., Miyashita, K., 2007. Fucoxanthin and fucoxanthinol enhance the amount of docosahexaenoic acid in the liver of KKAy obese/diabetic mice. J. Agric. Food Chem. 55, 5025–5029. https://doi.org/10.1021/jf070110q
15. Kim, K.M., Kim, S.M., Cho, D.Y., Park, S.J., Joo, N.S., 2016. The Effect of Xanthigen on the Expression of Brown Adipose Tissue Assessed by 18F-FDG PET. Yonsei Med. J. 57, 1038–1041. https://doi.org/10.3349/ymj.2016.57.4.1038
16. Lai, C.-S., Tsai, M.-L., Badmaev, V., Jimenez, M., Ho, C.-T., Pan, M.-H., 2012. Xanthigen suppresses preadipocyte differentiation and adipogenesis through down-regulation of PPARγ and C/EBPs and modulation of SIRT-1, AMPK, and FoxO pathways. J. Agric. Food Chem. 60, 1094–101. https://doi.org/10.1021/jf204862d
17. Choi, K.-M., Jeon, Y.S., Kim, W., Lee, A., Kim, Y.-G., Lee, J.H., Kang, Y.E., Jung, J.-C., Lee, J., Min, B., Kwon, S.H., Davis, B., Lee, M.K., Yoo, H.-S., 2014. Xanthigen attenuates high-fat diet-induced obesity through down-regulation of PPARγ and activation of the AMPK pathway. Food Sci. Biotechnol. 23, 931–935. https://doi.org/10.1007/s10068-014-0125-1
18. Tissenbaum, H.A., Guarente, L., 2001. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230. https://doi.org/10.1038/35065638
19. Carretero, M., Solis, G.M., Petrascheck, M., 2017. C. elegans as Model for Drug Discovery. Curr. Top. Med. Chem. 17. https://doi.org/10.2174/1568026617666170131114401
20. J Sulston, J.H., 1988. The Nematode Caenorhabditis elegans (Cold Spring Harbor Monograph Series 17), Universi. ed. Cold Spring Harbor, NY.
21. O’Rourke, E.J., Soukas, A.A., Carr, C.E., Ruvkun, G., 2009. C. elegans Major Fats Are Stored in Vesicles Distinct from Lysosome-Related Organelles. Cell Metab. 10, 430–435. https://doi.org/10.1016/j.cmet.2009.10.002
22. Senchuk, M., Dues, D., Van Raamsdonk, J., 2017. Measuring Oxidative Stress in Caenorhabditis elegans: Paraquat and Juglone Sensitivity Assays. BIO-PROTOCOL 7. https://doi.org/10.21769/BioProtoc.2086
23. Lithgow, G.J., White, T.M., Melov, S., Johnson, T.E., 1995. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. U. S. A. 92, 7540–4.
24. Hasegawa, K., Miwa, S., Isomura, K., Tsutsumiuchi, K., Taniguchi, H., Miwa, J., 2008. Acrylamide-responsive genes in the nematode Caenorhabditis elegans. Toxicol. Sci. 101, 215–25. https://doi.org/10.1093/toxsci/kfm276
25. Sun, X., Chen, W.-D., Wang, Y.-D., 2017. DAF-16/FOXO Transcription Factor in Aging and Longevity. Front. Pharmacol. 8, 548. https://doi.org/10.3389/fphar.2017.00548
26. Shen, P., Yue, Y., Park, Y., 2018. A living model for obesity and aging research: Caenorhabditis elegans. Crit. Rev. Food Sci. Nutr. 58, 741–754. https://doi.org/10.1080/10408398.2016.1220914
27. Lashmanova, E., Proshkina, E., Zhikrivetskaya, S., Shevchenko, O., Marusich, E., Leonov, S., Melerzanov, A., Zhavoronkov, A., Moskalev, A., 2015. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol. Res. 100, 228–41. https://doi.org/10.1016/j.phrs.2015.08.009
28. Shaygannia, E., Bahmani, M., Zamanzad, B., Rafieian-Kopaei, M., 2016. A Review Study on Punica granatum L. J. Evid. Based. Complementary Altern. Med. 21, 221–7. https://doi.org/10.1177/2156587215598039
29. Madeo, F., Carmona-Gutierrez, D., Hofer, S.J., Kroemer, G., 2019. Caloric Restriction Mimetics against Age-Associated Disease: Targets, Mechanisms, and Therapeutic Potential. Cell Metab. 29, 592–610. https://doi.org/10.1016/j.cmet.2019.01.018
30. Chang, Y.-H., Chen, Y.-L., Huang, W.-C., Liou, C.-J., 2018. Fucoxanthin attenuates fatty acid-induced lipid accumulation in FL83B hepatocytes through regulated Sirt1/AMPK signaling pathway. Biochem. Biophys. Res. Commun. 495, 197–203. https://doi.org/10.1016/j.bbrc.2017.11.022
31. Zevian, S.C., Yanowitz, J.L., 2014. Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods 68, 450–7. https://doi.org/10.1016/j.ymeth.2014.04.015
32. Voisine, C., Pedersen, J.S., Morimoto, R.I., 2010. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis. 40, 12–20. https://doi.org/10.1016/j.nbd.2010.05.007
33. Abbas, S., Wink, M., 2014. Green Tea Extract Induces the Resistance of Caenorhabditis elegans against Oxidative Stress. Antioxidants (Basel, Switzerland) 3, 129–43. https://doi.org/10.3390/antiox3010129
34. Lee, E.B., Kim, J.H., An, C.W., Kim, Y.J., Noh, Y.J., Kim, S.J., Kim, J.-E., Shrestha, A.C., Ham, H.-N., Leem, J.-Y., Jo, H.-K., Kim, D.-S., Moon, K.H., Lee, J.H., Jeong, K.O., Kim, D.K., 2018. Longevity and Stress Resistant Property of 6-Gingerol from Zingiber officinale Roscoe in Caenorhabditis elegans. Biomol. Ther. (Seoul). 26, 568–575. https://doi.org/10.4062/biomolther.2017.215
35. Hamilton, K.L., Miller, B.F., 2016. What is the evidence for stress resistance and slowed aging? Exp. Gerontol. 82, 67–72. https://doi.org/10.1016/j.exger.2016.06.001