Power and Sample Size for Contingency Tables


Power and Sample Size for Contingency Tables


Seock-Ho Kim1, Hyo Jin Eom2

1The University of Georgia, 2Korea University


A review of association measures of effect size between two categorical variables in contingency tables is presented. Relationships among measures of effect size are explicated by considering the test statistics of independence, the nominal or ordinal nature of categorical variables, and the size of contingency tables. Tables that contain minimum sample sizes for testing independence between two categorical variables in contingency tables are also presented. Cramer’s V2 was employed as a main measure of association in tabulation. Illustrations are provided using data from 2018 General Social Survey for obtaining test statistics and measures of effect size for contingency tables. Determining appropriate sample sizes for statistical analysis of data in contingency tables is important for studies in behavioral sciences.


Keywords: categorical variable, contingency table, effect size, power, sample size

Free Full-text PDF


How to cite this article:
Seock-Ho Kim, Hyo Jin Eom. Power and Sample Size for Contingency Tables. American Journal of Educational Research and Reviews, 2022,7:89. DOI: 10.28933/ajerr-2021-09-2608sk


References:
1. Agresti, A. (1984). Analysis of ordinal categorical data. New York, NY: John Wiley & Sons.
2. Agresti, A. (2007). An introduction to categorical data analysis (2nd ed.). Hoboken, NJ: John Wiley & Sons.
3. Agresti, A. (2013). Categorical data analysis (3rd ed.). Hoboken, NJ: John Wiley & Sons.
4. American Educational Research Association. (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35 (6), 33–40.
5. American Psychological Association. (2013). Publication manual of the American Psychological Association (6th ed.). Washington, DC: Author.
6. American Psychological Association. (2020). Publication manual of the American Psychological Association (7th ed.). Washington, DC: Author.
7. Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, 13 (6), 4–16.
8. Brown, M. B., & Benedetti, J. K. (1977). Sampling behavior of tests for correlation in two-way contingency tables. Journal of the American Statistical Association, 72,309–315.
9. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
10. Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155–159.
11. Conover, W. J. (1980). Practical nonparametric statistics (2nd ed.). New York, NY: John Wiley & Sons.
12. Cramer, H. (1946). Mathematical methods of statistics. Princeton, NJ: Princeton University Press.
13. CYTEL Software Corporation. (2000). StatXact 4 for Windows: User manual. Cambridge, MA: Author.
14. Educational Testing Service. (1980). Test use and validity. Princeton, NJ: Author.
15. Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge, United Kingdom: Cambridge University Press.
16. Everitt, B. S. (1977). The analysis of contingency tables. London, Great Britain: Chapman and Hall.
17. Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, Instruments, & Computer, 41, 1149–1160.
18. Fisher, R. A. (1956). Mathematics of a lady tasting tea. In J. R. Newman (Ed.), The world of mathematics (Vol. 3, pp. 1512–1521). New York, NY: Simon & Schuster.
19. Fleiss, J. L. (1994). Measures of effect size for categorical data. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 245–260). New York, NY: Russell Sage Foundation.
20. Goodman, L. A., & Kruskal, W. H. (1954). Measures of association for cross classifications. Journal of the American Statistical Association, 49, 732–764.
21. Goodman, L. A., & Kruskal, W. H. (1963). Measures of association for cross classifications, III: Approximate sampling theory. Journal of the American Statistical Association, 58, 310–364.
22. Grissom, R. J., & Kim, J. J. (2005). Effect sizes for research: A broad practical approach. Mahwah, NJ: Lawrene Erlbaum Associates.
23. Hays, W. L. (1994). Statistics (5th ed.). Fort Worth, TX: Harcourt Brace.
24. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions (Vol. 1, 2nd ed.). New York, NY: John Wiley & Sons.
25. Kendall, M. G. (1970). Rank correlation methods (4th ed.). London, England: Charles Griffin.
26. Kendall, M. G., & Stuart, A. (1979). The advanced theory of statistics. Vol. 2: Inferene and relationship (4th ed.). Bucks, England: Charles Griffin.
27. Lancaster, H. O. (1969). The chi-squared distribution. New York, NY: John Wiley & Sons.
28. Liu, X. S. (2014). Statistical power analysis for the social and behavioral sciences: Basic and advanced techniques. New York, NY: Routledge.
29. Marascuilo, L. A., & Serlin, R. C. (1988). Statistical methods for the social and behavioral sciences. New York, NY: Freeman.
30. McNemar, Q. (1962). Psychological statistics (3rd ed.). New York, NY: Wiley.
31. Olejnik, S., & Algina, J. (2000). Measures of effect size for comparative studies: Applications, interpretations, and limitations. Contemporary Educational Psychology, 25, 241–286.
32. Pearson, K. (1904). On the theory of contingency and its relation to association and normal correlation. Drapers’ Company Research Memoirs, Biometric Series, 1.London: Dulau and Co.
33. Rosenthal, R. (1994). Parametric measures of effect size. In H. Cooper & L. V. Hedges (Eds.), The handbook of research sysntesis (pp. 231–244). New York, NY: Russell Sage Foundation.
34. Sakoda, J. M. (1977). Measures of association for multivariate contingency tables. Proceedings of the Social Statistics Section of the American statistical Association (Part III), 777-780.
35. Sakamoto, Y. (1985). Categorical data analysis by AIC. Tokyo, Japan: KTK Scientific Publishers.
36. SAS. (2004). SAS/STAT 9.1: User’s guide (Vol. 2). Cary, NC: SAS Institute.
37. Siegel, S., & Castellan, Jr., N. J. (1988). Nonparametric statistics for the behavioral sciences (2nd ed.). New York, NY: McGraw-Hill.
38. Somers, R. H. (1962). A new asymmetric measure of association for ordinal variables. American Sociological Review, 27, 799–811.
39. Stokes, M. E., Davis, C. S., & Koch, G. G. (2000). Categorical data analysis using the SAS system (2nd ed.). Cary, NC: SAS Institute.
40. Theil, H. (1972). Statistical decomposition analysis: With applications in the social and administrative sciences. Amsterdam, The Netherlands: North-Holland.
41. Tschuprow, A. A. (1939). Principles of the mathematical theory of correlation (M. Kantorowitsch Trans.). London, Great Britain: William Hodge and Company.
42. Upton, G. J. G. (1978). The analysis of cross-tabulated data. Chichester, England: John Wiley & Sons.
43. Venables, W. N., Smith, D. M., & The R Development Core Team. (2009). An introduction to R (2nd ed.). LaVergne, TN: Network Theory.
44. Weerahandi, S. (2003). Exact statistical methods for data analysis. New York, NY: Springer.
45. Yule, G. U. (1900). On the association of attributes in statistics. Philosophical Transactions of the Royal Society of London, Series A, 194, 257–319.
46. Yule, G. U. (1912). On the methods of measuring association between two attributes. Journal of the Royal Statistical Society, 75, 579–652.
47. Yule, G. U., & Kendall, M. G. (1950). An introduction to the theory of statistics (14th ed.). New York, NY: Hafner.


Terms of Use/Privacy Policy/ Disclaimer/ Other Policies:
You agree that by using our site/services, you have read, understood, and agreed to be bound by all of our terms of use/privacy policy/ disclaimer/ other policies (click here for details)


CC BY 4.0
This work and its PDF file(s) are licensed under a Creative Commons Attribution 4.0 International License.